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Several machine learning methods were applied to multiple sclerosis (MS) patient data to predict 2-
year disease course outcomes on two fronts; regression models used to estimate Expanded Disability
Status Scale (EDSS) scores and binary classifier models that labeled patients as ‘worsening’ or ‘non-
worsening’. An ensemble of three regression models (two recurrent neural networks and a random
forest regressor) accomplished a mean absolute error (MAE) of 0.51 and an accuracy of 50.0% on
predicting 2-year EDSS scores on test data. A second ensemble of three binary classifier models (a
dense neural network, a logistic regressor, and a linear support vector machine) achieved 67.6% ac-
curacy on test data, with 32.4% precision and 35.9% recall for the ‘worsening’ class. A final ensemble
combined both regression and binary classification by using a one-dimensional convolutional neural
network as a preprocessing step. It produced a prediction on the 2-year EDSS score, and fed that
prediction to a two-branched, binary classification neural network. This ensemble achieved 63.0%
accuracy on test data, with 33.3% precision and 23.3% recall for the ‘worsening’ class.

INTRODUCTION

Multiple Sclerosis (MS) is a demyelinating disease
of the central nervous system (CNS) that disrupts the
body’s ability to deliver signals across neurons [1–
4]. MS is characterized by deteriorating motor and
sensory function, but includes a host of other symp-
toms ranging from depression and anxiety to auto-
nomic disfunction[5–8]. There are several physician-
administered ordinal-scale instruments used to assess a
patient’s severity based on the intensity of certain phys-
ical and neurological impairments. The most widely-
used scale is Kurtzke’s Expanded Disability Status Scale
(EDSS), which rates MS progression from 0 to 10 in 0.5
increments (excluding 0.5).

There are three main types of MS: relapsing-remitting
(RRMS), secondary-progressive (SPMS), and primary
progressive (PPMS). Each disease course is unique,
and each show erratic, seemingly-unpredictable be-
havior. Extreme variance amongst different patients
has made it difficult to establish standard progression
rates, despite years of exploration into various MS mod-
els. Previous attempts include a multilayer regression
model[9], a support vector machine (SVM)[6], logistic
regression[4], Markov models[10], and a fully-connected
perceptron deep neural net[7]. The most successful
models had access to MRI data, which can be costly
and time-consuming.

The surge of DNNs in recent years led to a type of
model known as the recurrent neural network (RNN)
specifically suited for reading time series data and fore-
casting the future. This advanced deep learning method,
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paired with other established machine learning tech-
niques, may allow for a model to interpret a multi-
tude of clinical signals from years of standard medical
care to produce predictions on a patient’s 2-year sta-
tus. Here we explore the efficacy of these intricate mod-
els at predicting accurate disease outcomes in a data-
impoverished setting.

MATERIALS AND METHODS

Rhode Island Hospital provided 7,631 records of in-
dividual MS patient appointments that included 1,164
unique patients. After filtering out subjects that had no
diagnosis date and less than three years of data, the
cohort was left with 3,848 visits and 705 unique pa-
tients. Table I shows the demographic breakdown of the
dataset.

The data was first organized by patient into time se-
ries of medical appointments. Though appointments oc-
curred at uneven time intervals, the records were buck-
eted by year and each patient time series was padded
to be 5 years long. Tables II and III show the features
available. The categorical signals were one-hot encoded
(prepared as binary vectors where each index repre-
sents a category) and the numerical signals were nor-
malized by removing the mean and dividing by the stan-
dard deviation.

Once organized as three-dimensional tensors with
shape [patients, time steps, features], the data was pro-
cessed by two different ensembles of machine learning
models. The first ensemble is meant for binary classifi-
cation, where each patient was labeled as ‘worsening’ or
‘non-worsening’ depending on their EDSS score 2 years
ahead of their 5-year input sequence. Two neural nets
comprised this ensemble; a convolutional net trained on
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regression predicted 2-year EDSS scores, then fed its
prediction as an additional feature to a two-branch neu-
ral net that produced the final binary output. With 705
total samples, 405 were used as a training set, 200 as
a validation set, and 100 as a test set. The preprocess-
ing network used mean squared error (MSE) as its loss
function. The output network used binary cross-entropy
as loss. Both used Adam as their optimizer.

The second ensemble was trained to predict EDSS
scores two years into the future. It was composed of
a convolutional-recurrent neural net, a time-distributed
dense net, and a random forest regressor. Final pre-
dictions were determined by taking a weighted average
of the individual predictions. The weights were 0.4, 0.1,
and 0.5, respectively. Each model used MSE as its loss
function. Both neural nets used stochastic gradient de-
scent (SGD) as their optimizer. Since the random forest
regressor has no means of validation during training, the
705 patients were split into a training set of 405 and a
test set of 300.

Finally, the data was reorganized by appointment,
such that there were no longer time series of signals,
but rather single time slices used to predict 2-year out-
comes (worsening or non-worsening). Another ensem-
ble of three models, a fully-connected neural network
with one skip connection, a logistic regressor, and a lin-
ear support vector machine (SVM), was trained on 2,356
samples (631 worsening) and tested on 1,492 samples
(348 worsening). Due to the severe class imbalance,
each model used its own method of data augmentation
to get a more even split between ‘worsening’ and ‘non-
worsening’. The neural network adjusted the minority
class weight to 10:1, such that it would be 10 times as
costly to get a ‘’worsening’ sample incorrect. In addi-
tion, Gaussian interpolation was used to upsample the
minority class. This is when the ‘worsening’ samples are
copied, Gaussian noise is added to their numerical fea-
tures, and then new data points are created by taking
two old samples and interpolating a new sample in be-
tween them. This artificially doubles the size of the mi-
nority class without directly copying those samples. The
test cohort is not affected. The logistic regressor used a
3:1 class imbalance, and the linear SVM used interpola-
tion upsampling without Gaussian noise. See Appendix
for more information on model architectures.

RESULTS

Demographics N

Number of subjects 705
Number of individual appointments 3,848

Number of females (%) 72.3
Average age at start of study 48

Average age at onset of diagnosis 37
Average EDSS score 2.62

Number of RRMS patients 486
Number of SPMS patients 152
Number of PPMS patients 45

Number of CIS patients 17
Number of RIS patients 10

Number of unspecified patients 1

TABLE I: Demographic data.

Provided Features Data Type

Study ID* Numerical
EDSS Score Numerical
Type of MS Categorical

Current Treatment (%) Categorical
Past Treatment Categorical

Gender Categorical
Age Numerical

Marital Status* Categorical
Employment Status* Categorical

ICD Code* Categorical
Final Appointment Date* Datetime

Current Appointment Date* Datetime
Year Diagnosis* Datetime

TABLE II: Features provided by Rhode Island hospital. Those
features marked with an asterisk (*) are features not fed into

the model. Some of the unused features were used to
calculate other features.

CONCLUSION

In cases where MRI data is unavailable, this research
shows the strength of a powerful neural network at pro-
viding insight into an MS patient’s future. Recurrent ar-
chitectures bolster traditional ML models by finding dif-
ferent representations of patient data that can better
pick out progressive cases. However, achieving statisti-
cal power requires more data outside of clinical assess-
ment. Future work will involve building a complimentary
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Extrapolated Timeseries Features Data Type

Disease Duration Numerical
Age at Onset Numerical

EDSS Subcategory Categorical
Year-to-Date Visits (%) Numerical
Initial Rate of Change† Numerical

Initial Net Change† Numerical
Average Rate of Change† Numerical

Total Net Change† Numerical
Previous EDSS Score‡ Numerical

Score at Onset Numerical

TABLE III: Features calculated from those provided by Rhode
Island Hospital. Those marked with a dagger (†) are features

used only when a model had access to full time series of
appointments for each patient. A double dagger (‡) indicates
a feature used when a model was only looking at individual
appointments. ‘Initial’ means calculated over the first three

years, while Average Rate of Change and Total Net Change
were calculated over the full sequence. EDSS Subcategory
was used to denote what range a patient’s EDSS score fell

into: 1 – 3.5, 4 – 5.5, 6 – 8, or >8.

Overall Accuracy 67.0%
Worsening Precision 39.6%

Worsening Recall 33.9%
Non-Worsening Precision 75.7%

Non-Worsening Recall 79.9%
Worsening Relative Frequency 28.0%

Non-Worsening Relative Frequency 72.0%

TABLE IV: Binary classification results with access to full
patient history (validation cohort).

Overall Accuracy 63.0%
Worsening Precision 33.3%

Worsening Recall 23.3%
Non-Worsening Precision 70.9%

Non-Worsening Recall 80.0%
Worsening Relative Frequency 30.0%

Non-Worsening Relative Frequency 70.0%

TABLE V: Binary classification results with access to full
patient history (test cohort).

Model Mean Absolute Error Accuracy(%)
Convolutional-Recurrent 0.54 30%
Time-Distributed Dense 0.54 40%

Random Forest 0.56 45%
Full Ensemble 0.51 50%

TABLE VI: Regression results with access to full patient
history (test cohort).

Overall Accuracy 67.6%
Worsening Precision 32.4%

Worsening Recall 35.9%
Non-Worsening Precision 79.8%

Non-Worsening Recall 77.2%
Worsening Relative Frequency 23.3%

Non-Worsening Relative Frequency 76.7%

TABLE VII: Binary classification results with access to single
appointment (test cohort).

network that processes raw MRI data alongside clinical
signals.
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FIG. 1: Convolutional-recurrent model used in the temporal
regression network.

Appendices
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FIG. 2: Time-Distributed Dense model used in the temporal
regression network.

FIG. 3: Convolutional model used in the temporal binary
classification network.
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FIG. 4: Branched model used in the temporal binary
classification network. The longer branch is purely

convolutional, the shorter branch is fully-connected, and the
outputs are concatenated then fed through another dense

layer.
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FIG. 5: Dense network used in the single-appointment binary
classification network.
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