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Abstract
The recent success of distributed word repre-
sentations has led to an increased interest in
analyzing the properties of their spatial distri-
bution. Several studies have suggested that
contextualized word embedding models do not
isotropically project tokens into vector space.
However, current methods designed to mea-
sure isotropy, such as average random cosine
similarity and the partition score, have not
been thoroughly analyzed and are not appro-
priate for measuring isotropy. We propose
IsoScore: a novel tool that quantifies the de-
gree to which a point cloud uniformly utilizes
the ambient vector space. Using rigorously de-
signed tests, we demonstrate that IsoScore is
the only tool available in the literature that ac-
curately measures how uniformly distributed
variance is across dimensions in vector space.
Additionally, we use IsoScore to challenge a
number of recent conclusions in the NLP liter-
ature that have been derived using brittle met-
rics of isotropy. We caution future studies
from using existing tools to measure isotropy
in contextualized embedding space as result-
ing conclusions will be misleading or alto-
gether inaccurate.

1 Introduction & Background

The first step in any natural language processing
pipeline is to represent text in a vector space. Un-
derstanding how contextualized word embedding
models project tokens into vector space is crucial
for advancing the field of natural language process-
ing. Several recent studies analyzing the spatial dis-
tribution of contextualized word embeddings claim
that the point clouds induced by models such as
BERT or GPT-2 do not uniformly utilize all dimen-
sions of the vector space they occupy (Ethayarajh,
2019; Mickus et al., 2019; Cai et al., 2021; Coenen
et al., 2019b; Gao et al., 2019).

Figure 1 illustrates a two-dimensional disk
that uniformly utilizes the x and y axes in two-
dimensional space, but does not uniformly utilize

all dimensions when embedded into three dimen-
sions.

Figure 1: From left to right, a line, disk, and ball em-
bedded in 3D space.

A distribution is isotropic when variance is uni-
formly distributed across all dimensions. Namely,
a distribution is fully isotropic when the covariance
matrix is proportional to the identity matrix. Sev-
eral authors suggest that isotropy correlates with
improved performance of embedding models (Biś
et al., 2021; Wang et al., 2019; Coenen et al., 2019a;
Gong et al., 2018; Hasan and Curry, 2017; He-
witt and Manning, 2019; Liang et al., 2021; Zhou
et al., 2019, 2021). However, current methods of
measuring the spatial utilization of contextualized
embedding models do not truly measure isotropy.
The most commonly used methods for measuring
spatial distribution in embedding spaces include av-
erage random cosine similarity, the partition score,
variance explained and intrinsic dimensionality es-
timation. In Section 5 we argue that all current
methods of measuring isotropy have fundamen-
tal shortcomings that render them inadequate mea-
sures of spatial distribution.

To overcome these limitations, we introduce
IsoScore: a novel tool for measuring the extent
to which the variance of a point cloud is uniformly
distributed across all dimensions in vector space. In
contrast to previous attempts of measuring isotropy,
IsoScore is the first score that incorporates the
mathematical definition of isotropy into its formu-
lation. As a result, IsoScore has the following de-
sirable properties that surpass the capabilities of
existing metrics: (i) It is a global measure of how



uniformly distributed points are in vector space
that is robust to changes in the distribution mean
and scalar changes in covariance; (ii) It is rota-
tion invariant; (iii) It increases linearly as more
dimensions are utilized; and (iv) It is not skewed
by highly isotropic subspaces within the data. This
paper makes the following novel contributions.

1. This paper outlines essential conditions for
measuring isotropy and uses a testing suite
to empirically verify if a given method meets
these conditions.

2. We highlight fundamental shortcomings of
state-of-the-art tools and demonstrate that
none of the existing methods accurately mea-
sure isotropy.

3. We present IsoScore, the first rigorously de-
fined method for measuring isotropy in point
clouds of data.

4. We share an efficient Python implementation
of IsoScore with the community.1

The remainder of this paper is structured as fol-
lows: Section 2 reviews previous works attempting
to study isotropy in contextualized word embed-
dings. Section 3 formally defines isotropy and
describes existing tools in detail. The formal defi-
nition of IsoScore is presented in Section 4 and in
Section 5, we report empirical results from experi-
ments on contextualized word embeddings. Finally,
Section 6 concludes with an outlook on future di-
rections of work.

2 Related Work

2.1 Word Embeddings
In recent years, there has been an increased inter-
est in analyzing the spatial organization of point
clouds induced by word embeddings (Biś et al.,
2021; Mickus et al., 2019; Ethayarajh, 2019; Co-
enen et al., 2019b; Cai et al., 2021; Mu et al.,
2017; Liang et al., 2021). Several studies have
concluded that contextualized embeddings form
highly anisotropic, “narrow cones” in vector space
(Ethayarajh, 2019; Cai et al., 2021; Gao et al., 2019;
Gong et al., 2018). The most prevalent tools used to
quantify the geometry of word embedding models
calculate the average cosine similarity of a small
number of randomly sampled pairs of points in

1https://github.com/bcbi-edu/p_eickhoff_isoscore. Alter-
natively: pip install IsoScore.

embedding space. Ethayarajh (2019) claims that
in some cases, contextualized embedding models
have an average random cosine similarity that ap-
proaches 1.0, meaning all points are oriented in
the same direction in space irrespective of their
syntactic or semantic function.

Figure 2: Left: Point cloud X ⊂ R2. Right: Result of
applying a zero-mean transform to X .

In Section 5, we demonstrate that both average
random cosine similarity and the partition score
are significantly influenced by the mean of the data
irrespective of how data points are distributed in
vector space. Namely, if we normalize data to have
zero-mean, average random cosine similarity and
the partition score will artificially produce a score
that reflects maximal isotropy. Figure 2 demon-
strates that a applying a zero-mean transform to a
point cloud increases the angle of randomly sam-
pled points. Accordingly, the average random co-
sine of the left point cloud in Figure 2 approaches
1 while the average random cosine similarity of the
right point cloud approaches 0. It is well known
that word embedding models have non-zero mean
vectors (Yonghe et al., 2019; Liang et al., 2021). In
the case of GPT-2 embeddings obtained from the
WikiText-2 corpus (Merity et al., 2016), we find
values in the mean vector range from −32.36 to
198.19. Although cosine similarity has long been
used to capture the “semantic” differences between
words in static embeddings, adapting any cosine
similarity-based methods to measure isotropy ob-
scures the true distribution of contextualized word
embeddings.

2.2 Existing Methods

We briefly review the most commonly used tools
to measure the spatial distribution of point clouds
X ⊆ Rn. A mathematical exposition of these tools
can be found in Appendix B.

Average Random Cosine Similarity: We de-
fine the Average Random Cosine Similarity Score
as 1 minus the average cosine similarity of N =
100, 000 randomly sampled pairs of points from X .
Note: for ease of comparison to other methods, we

https://github.com/bcbi-edu/p_eickhoff_isoscore


Test IsoScore AvgRandCosSim Partition ID Score VarEx
1. Mean Agnostic 3 7 7 3 3

2. Scalar Covariance 3 7 7 3 3

3. Maximum Variance 3 7 3 7 7

4. Rotation Invariance 3 3 7 3 3

5. Dimensions Used 3 7 7 7 7

6. Global Stability 3 7 3 3 7

Table 1: Performance of current methods for measuring spatial utilization.

calculate 1 minus the absolute value of the average
random cosine similarity so that 0 would indicate
minimal isotropy and 1 would indicate maximal
isotropy. We demonstrate in Section 5 that aver-
age random cosine similarity is not a measure of
isotropy.
Partition Isotropy Score: Mu et al. (2017) de-
fine this score to be a particular quotient involving
the partition function first proposed by Arora et al.
(2015): Z(c) :=

∑
x∈X exp(cTx), where c is care-

fully chosen from the eigenspectrum of XXT. It
is believed that a score closer to 0 indicates an
anisotropic space, while a score near 1 indicates an
isotropic space. We refer to this as the Partition
Score.

Intrinsic Dimensionality: Algorithms for esti-
mating intrinsic dimensionality aim to compute the
true dimension of a given manifold from which we
assume a point cloud has been sampled. Intrinsic
dimensionality has been used to argue word embed-
ding models are anisotropic (Cai et al., 2021). We
use the MLE method to calculate intrinsic dimen-
sionality (Levina and Bickel, 2004). Dividing the
intrinsic dimensionality of X ⊆ Rn by n provides
us with a normalized score of isotropy, which we
refer to as the ID Score.

Variance Explained Ratio: The variance ex-
plained ratio, which we refer to as the VarEx Score,
measures how much total variance is explained by
the first k principal components of the data. We
compute this by dividing the variance explained by
the first k principal components by k/n. The VarEx
Score requires us to specify a priori the number of
principal components we wish to examine, which
makes comparisons between vector spaces with
different dimensions difficult and results in unde-
sirable behavior, particularly when the dimension
of the vector space is large.

Section 5 demonstrates that all existing methods
have fundamental shortcomings that make them
unreliable measures of spatial distribution. Using
any of the above existing tools to make claims

about isotropy will be misleading as none of the
described methods truly measure isotropy.

3 Measuring Embedding Space
Utilization

3.1 Definition of Isotropy
A distribution is isotropic if its variance is uni-
formly distributed across all dimensions. Namely,
the covariance matrix of an isotropic distribution
is proportional to the identity matrix. Conversely,
an anisotropic distribution of data is one where the
variance is dominated by a single dimension. For
example, a line in n-dimensional vector space is
maximally anisotropic. Robust isotropy metrics
should return maximally isotropic scores for balls
and minimally isotropic (i.e. anisotropic) scores for
lines. Appendix D provides a geometric interpreta-
tion of “medium isotropy”. We interpret a medium
isotropic space in Rn to be one where the data uni-
formly utilizes approximately n/2 dimensions in
space as defined below. Note that we exclude two
edge cases for measuring isotropy. Firstly, since
isotropy is a property of the covariance matrix of a
distribution, the dimensionality of the space needs
to be greater than 1. Secondly, we do not consider
the extreme case where the data consists of a single
point.

3.2 Dimensions utilized
Given a point cloud X ⊆ Rn, we measure how
many dimensions of Rn are truly utilized byX . For
example, we denote by I(k)n the n× n covariance
matrix where ai,i = 1 for i ∈ {1, 2, ..., k} and all
other elements are 0. Note that when k = n, we
recover the identity matrix. Thus, I(k)n represents a
covariance matrix where the first k dimensions are
being uniformly utilized. Figure 1 illustrates point
clouds in R3 that have covariance matrix I(1)3 , I(2)3 ,
and I(3)3 . These utilize 1, 2, and 3 dimensions in
R3. To make this discussion rigorous and general,
we make the following definition:
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Table 2: Linearly increasing dimensions utilized in R9 linearly increases IsoScore. We prove in Appendix D that
IsoScore satisfies the formula ι(I(k)n ) = k−1

n−1 .

Definition 3.1. Consider a point cloud X ⊆ Rn.
Let Σ be the covariance matrix of X and assume
all the off-diagonal entries of Σ are zero. Let ΣD ∈
Rn denote the diagonal of Σ.

1. We say X utilizes k dimensions in Rn if the
first k entries of ΣD are non-zero and the re-
maining n− k entries are zero.

2. We say X uniformly utilizes k dimensions in
Rn if X utilizes k dimensions in Rn and if all
the non-zero entries in ΣD are equal.

Having a diagonal sample covariance matrix Σ
implies there are no correlations between any coor-
dinates of X . In Section 4, we reduce the general
case of X to the case where the covariance matrix
of X is diagonal. Figure 3 illustrates three point
clouds in R2 that each utilize 2 dimensions. We ar-
gue that it is of practical importance to differentiate
between the cases in Figure 3. The leftmost panel
uniformly utilizes all dimensions of R2, while the
rightmost panel does not uniformly utilize two di-
mensions of space. Note that average random co-
sine similarity returns maximal isotropy scores for
each point cloud pictured in Figure 3.

Our proposed IsoScore reflects the dimensions
utilized by a point cloud in a linear fashion. See
Table 2 for a concrete example of how IsoScore
reflects dimensions utilized in R9.

Figure 3: Points sampled from a 0 mean, 2D Gaussian
with covariance ( x 0

0 1 ) where x = 1, 3, 75.

3.3 Essential Properties of Isotropy
We now outline the essential properties that a mea-
sure of isotropy must possess.

1: Mean Agnostic. Recall that a distribution is
isotropic if variance is uniform across all dimen-
sions. It is essential to note that isotropy is strictly a

property of the covariance matrix of a distribution.
If changes to the mean of a distribution influence
an isotropy score, then the given score does not
measure isotropy.

2: Scalar Changes to the Covariance Matrix.
Since isotropy is defined as the uniformity of vari-
ance across all dimensions, isotropy scores should
not change when we multiply the covariance ma-
trix of the underlying distribution of the data by a
positive scalar value. If the covariance matrix of a
distribution of data is equal to λ · In where λ > 0
is some scalar value and In is the n × n identity
matrix, then a tool must return an isotropy score
approaching 1.

3: Maximum Variance. As we increase the
difference between the maximum variance value
in our covariance matrix and the average variance
value of the remaining dimensions, isotropy scores
should monotonically decrease to zero. Figure 3
illustrates the effect of increasing the difference be-
tween the average variance value and the maximum
value in the covariance matrix. Increasing the dif-
ference between the maximum variance value and
the average variance value increases the amount
of variance explained by the first principal compo-
nent of the data. Namely, larger maximum variance
values reduce the efficiency of spatial utilization.

4: Rotation Invariance. Given a point cloud
X ⊂ Rn, an ideal measure of spatial utilization
should remain constant under rotations of X since
the distribution of principal components remains
constant under rotation. Accordingly, we consider
the canonical distribution of the variance of X to
be the variance after projecting X using principal
component analysis. Figure 4 illustrates the process
of PCA-reorientation.

5: Dimensions Used. As described in Subsec-
tion 3.2, there is a direct link between isotropy
and the number of dimensions utilized by the data.
Intuitively, increasing the number of dimensions
uniformly utilized by the data expands the number
of principal components it takes to explain all of
the variance in the data. Accordingly, a good score
of spatial utilization should increase linearly as we



increase the number of dimensions uniformly uti-
lized by the data. Figure 1 depicts data utilizing
one, two, and three out of three ambient dimen-
sions, respectively.

Figure 4: Left: 2D zero-mean Gaussian with covari-
ance ( 1 0.8

0.8 1 ). We rotate X by 120◦ and 240◦, respec-
tively. Right: Points after applying PCA reorientation.

6: Global stability. A metric of efficient spatial
utilization should be a global reflection of the dis-
tribution. A robust method should be stable even
when the data exhibits small subpopulations where
a score would return an extreme value.

We test this by computing IsoScore for the union
of a noisy sphere and a line; we provide a geometric
rendering of this in Figure 5 in Appendix E. We
refer to this test as the “skewered meatball” test. A
good score of spatial distribution for a “skewered
meatball” should reflect the ratio of the number of
points sampled from the line and the number of
points sampled from the sphere.

Figure 5: 2D rendering of a line in 3D space intersect-
ing noisy sphere. AKA “skewered meatball.”

In Table 1, we list which existing methods sat-
isfy which essential conditions. Section 5 outlines
the numerical experiments we execute to obtain
this table. As each of the above properties have
been derived from the mathematical definition of
isotropy, an accurate tool for measuring isotropy
needs to satisfy each essential condition.

4 IsoScore
This section introduces the proposed IsoScore met-
ric of uniform spatial utilization.

4.1 Formal Definition of IsoScore
Algorithm 1 gives a high-level overview of the
procedure. Afterwards, we discuss the individual
steps in detail.

Step 1: Start with a point cloud X ⊆ Rn.
IsoScore takes as input a finite subset of Rn and
outputs a number in the interval [0, 1] that repre-
sents the extent to which X is isotropic.

Step 2: PCA-reorientation of data set. Ex-
ecute PCA on X , where the target dimension re-
mains the original n. Performing PCA reorients the
axes of X so that the i’th coordinate accounts for
the i’th greatest variance. Further, it eliminates all
correlation between dimensions making the covari-
ance matrix diagonal. We denote the transformed
space as XPCA.

Step 3: Compute variance vector of reori-
ented data. Compute the n× n covariance matrix
of XPCA; denote this matrix by Σ. Let ΣD denote
the diagonal of the covariance matrix. We refer
to ΣD as the variance vector, and we identify ΣD

as a vector in Rn. Performing Step 2 causes all
off-diagonal entries of the covariance matrix ofXT

to vanish, which allows us to ignore off-diagonal
elements for the rest of the computation.

Step 4: Length normalization of variance
vector. We define the normalized variance vector
to be

Σ̂D :=
√
n · ΣD

‖ΣD‖
,

where ‖(x1, ..., xn)‖ :=
√
x21 + · · ·+ x2n denotes

the standard Euclidean norm on Rn. Note that as a
result of this normalization, we have ‖Σ̂D‖ =

√
n.

Step 5: Compute the distance between the co-
variance matrix and identity matrix. Denote the
diagonal of the n × n identity matrix by 1 ∈ Rn.
Then we define the isotropy defect of X to be

δ(X) :=
‖Σ̂D − 1‖√
2(n−

√
n)
.

By definition of the Euclidean norm, we have
‖Σ̂D‖ = ‖1‖ =

√
n. It follows from the trian-

gle inequality that ‖Σ̂D − 1‖ ∈ [0, 2
√
n]. Cru-

cially, we prove in Appendix C that achieving
a value of 2

√
n using a valid covariance matrix

is impossible. The largest value that can be at-
tained is with the matrix (aij)i,j=1,...,n defined by



Algorithm 1 IsoScore
1: begin Let X ⊂ Rn be a finite collection of points.
2: Let XPCA denote the points in X transformed by the first n principal components.
3: Define ΣD ∈ Rn as the diagonal of the covariance matrix of XPCA.
4: Normalize diagonal to Σ̂D :=

√
n · ΣD/‖ΣD‖, where ‖ · ‖ is the standard Euclidean norm.

5: The isotropy defect is δ(X) := ‖Σ̂D − 1‖/
√

2(n−
√
n), where 1 = (1, . . . , 1)> ∈ Rn.

6: X uniformly occupies φ(X) := (n− δ(X)2(n−
√
n))2/n2 percent of ambient dimensions.

7: Transform φ(X) so it can take values in [0, 1], via ι(X) := (n · φ(X)− 1)/(n− 1).
8: return: ι(X)
9: end

a11 =
√
n and aii = 0 whenever i > 1. One can

compute that the Euclidean norm in this case is
‖Σ̂D − 1‖ =

√
2(n−

√
n). Choosing this nor-

malization factor guarantees that δ(X) ∈ [0, 1],
where 0 represents a perfectly isotropic space and
1 represents a perfectly anisotropic space.

Step 6: Use the isotropy defect to compute
percentage of dimensions isotropically utilized.
We argue in Heuristic D.1 that if X has isotropy
defect δ(X), then X isotropically occupies approx-
imately k(X) = (n − δ(X)2(n −

√
n))2/n di-

mensions in Rn. Because δ(X) ∈ [0, 1], one can
estimate that k(X) ∈ [1, n] so the fraction of di-
mensions utilized is φ(X) := k(X)/n ∈ [1/n, 1].

Step 7: Linearly scale percentage of dimen-
sions utilized to obtain IsoScore. The fraction
of dimensions utilized, φ(X), is close to the final
IsoScore, but it falls within the interval [1/n, 1]. As
we want the possible range of scores to fill the in-
terval [0, 1], we apply the affine function that maps
1/n 7→ 0 and 1 7→ 1. Thus, S : [1/n, 1]→ [0, 1] :
x 7→ (nx − 1)/(n − 1). Once we compose these
transformations, we obtain IsoScore:

ι(X) :=
(n− δ(X)2(n−

√
n))2 − n

n(n− 1)
. (4.1)

4.2 Geometric Interpretation for IsoScore
In Subsection 4.1 we described how to compute
an IsoScore ι(X) for any point cloud X ⊆ Rn.
We will now present a heuristic interpretation for
a given IsoScore. Intuitively, our heuristic says
that ι(X) is roughly the fraction of dimensions of
Rn utilized by X . More precisely, the quantity of
dimensions of Rn utilized by X is some number
inside the interval [ι(X)n, ι(X)n+ 1]∩ [1, n]. We
formalize this below.
Heuristic 4.1. When the ambient space Rn has
large dimension, the IsoScore ι(X) is approxi-
mately the fraction of dimensions uniformly utilized
by X .

We prove this heuristic in Appendix D. Note in
particular that ι(X) = 0 implies that D.1 simpli-
fies to a single dimension utilized and ι(X) = 1
implies that D.1 simplifies to all n dimensions uti-
lized.

Because IsoScore covers a continuous spectrum,
one should carefully interpret what we mean when
we say that X occupies approximately k dimen-
sions of Rn. For example, consider the 2D Gaus-
sian distributions depicted in Figure 3. Heuris-
tic D.1 predicts k = 1.9996, 1.6105, 1.0281 di-
mensions are used when x = 1, 3, 75, respectively.
These should be interpreted as follows: “when
x = 75, the points sampled are mostly using one
direction of space” and “when x = 3, the points
sampled are using somewhere between one and two
dimensions of space.”

5 Experiments

In Subsection 5.1, we present results from nu-
merical experiments designed to test each of the
isotropy scores presented in this paper against the
six essential properties outlined in Section 3.3. Ex-
act descriptions of the numerical experiments are
provided in Appendix E. We reiterate that each of
the essential conditions have been derived directly
from the mathematical definition of isotropy and
violating any of the essential properties disqualifies
a method from being a correct measure of isotropy.

In Subsection 5.2, we demonstrate the merit of
IsoScore by recreating the experimental setup pre-
sented in (Cai et al., 2021). We create word em-
beddings for tokens from the WikiText-2 corpus
using GPT (Radford and Narasimhan, 2018), GPT-
2 (Radford et al., 2019), BERT (Devlin et al., 2018)
and DistilBERT (Sanh et al., 2019) and calculate
isotropy scores for each layer of the model.



Figure 6: Left: Scores of points sampled from a 10-dimensional Gaussian with identity covariance and common
mean vector ranging from 0 to 20. Center: Scores for the scalar covariance test for a 5-dimensional, zero-mean
Gaussian. Right: Scores for the Maximum Variance test for 10-dimensional, zero-mean Gaussians.

5.1 Testing methods against the essential
properties

Test 1: Mean Agnostic. When the covariance ma-
trix of a distribution is proportional to the identity
matrix, measures of isotropy should return a score
of 1 regardless of the value of the mean. Figure 6
demonstrates that neither average random cosine
similarity nor the partition score are mean-agnostic.
IsoScore is mean-agnostic since it is a function of
the covariance matrix. Importantly average random
cosine similarity and the partition score are skewed
by non-zero mean data. Our results show that, for
an isotropic Gaussian with covariance matrix λ · In
and mean vectorM = [µ, µ, ..., µ], the average ran-
dom cosine similarity of points sampled from this
distribution will approach 0 as we increase the ratio
between µ/λ. Consequently, zero-centering data
will cause average random cosine similarity to re-
turn maximally isotropic scores without impacting
the distribution of the variance.

Test 2: Scalar Changes to the Covariance
Matrix. For a 5-dimensional Gaussian distribu-
tion with a zero mean vector and covariance matrix
λ · In, scores should reflect uniform utilization of
space for any λ > 0. Figure 6 shows that IsoScore
and the intrinsic dimensionality score are the only
metrics that are agnostic to scalar multiplication to
the covariance matrix and return a score 1 for each
value of λ. In Step 4 of IsoScore, we normalize the
diagonal of the covariance matrix to have the same
norm as the diagonal of the identity matrix, which
ensures IsoScore is invariant to scalar changes in
covariance.

Test 3: Maximum Variance. An effective
score should monotonically decrease to 0 as we
increase the difference between the maximum vari-
ance value and average variance. Steps 4 and 5 of

Table 3: Performance of current methods on Test 4: Ro-
tation Invariance

IsoScore AvgCosSim Partition ID Score VarEx
X 0.216 0.990 0.445 1.000 0.500
X120◦ 0.216 0.968 0.673 1.000 0.500
X240◦ 0.216 0.981 0.669 1.000 0.500
XPCA 0.216 0.993 0.446 1.000 0.500

IsoScore ensure that the less equitably the mass in
the covariance vector is distributed, the greater the
isotropy defect will be. Figure 3 visualizes this phe-
nomenon for a 2 Dimensional Gaussian. The ID
Score fails this test since the intrinsic dimensional-
ity estimate is 2.0 for all point clouds depicted in
Figure 3.

Test 4: Rotation Invariance. We rotate our
baseline point cloud X by 120◦ and 240◦. Lastly,
we project X using PCA reorientation while retain-
ing dimensionality to obtain a point cloud XPCA.
We record results in Table 3. Only IsoScore, ID
Score, and VarEx Score return constant values. The
partition score would return a constant value if
it were feasible to compute the true optimization
problem. The approximate version of the partition
score, however, depends too strongly on the basis.
IsoScore is rotation invariant by design. In Step
2, IsoScore projects the point cloud of data in the
directions of maximum variance before computing
the covariance matrix of the data.

Test 5: Dimensions Used (Fraction of Dimen-
sions Used Test). The number of dimensions used
in a point cloud X ⊂ Rn provides a sense of how
uniformly X utilizes the ambient space. A reliable
metric should return scores near 0.0, 0.5, and 1.0
when number of dimensions used is 1, bn/2c, and
n, respectively. Figure 7 shows that only IsoScore
models ideal behavior for the dimensions used test.



Figure 7: Left and center: Scores for the two Dimensions Used tests. Right: Scores for the “skewered meatball”
test in 3 dimensions.

A rigorous explanation of why IsoScore reflects
the percentage of 1s present in the diagonal of the
covariance matrix is provided in Heuristic 4.1. Al-
though the intrinsic dimensionality score monoton-
ically increases as we increase k, it fails to reach
1 when all dimensions are uniformly utilized. Av-
erage cosine similarity fails this test, as it stays
constant near 1 regardless of the fraction of dimen-
sions uniformly utilized.

Test 5: Dimensions Used (High Dimensional
Test). Metrics of spatial utilization should allow for
easy comparison between different vector spaces
even when the dimensionality of the two spaces
is different. Figure 7 illustrates that IsoScore,
the average cosine similarity score, and the par-
tition score pass this test, as they stay constant
near 1. Note that the line for IsoScore decreases
slightly. By the law of large numbers, the more
data points we sample from the Gaussian distribu-
tion, the closer the covariance matrix will be to
the covariance matrix from which it was sampled.
The VarEx Score is not stable under an increase
in dimension primarily because it requires the user
to specify the percentage of principal components
used in calculating the score. Note that the ID
Score begins to decrease simply by increasing the
dimensionality of the space since the MLE method
is not very well suited for estimating the intrinsic
dimension of isotropic Gaussian balls.

Test 6: Global Stability. To evaluate which
scores are not skewed by highly concentrated sub-
spaces, we design the “skewered meatball test” (see
Figure 5 for a geometric rendering). As we increase
the ratio between the number of points sampled
from a 3D isotropic Gaussian and a 1D anisotropic
line, we should see isotropy scores increase from
0 to 1, and hit 0.5 precisely when the number of
points sampled from the Gaussian distribution and
the line are equal. Results from the skewered meat-

ball test in Figure 7 indicate that the partition score,
IsoScore and intrinsic dimensionality estimation
are the only metrics that are global estimators of
the data.

5.2 Isotropy in Contextualized Embeddings

Recent literature suggests that contextualized word
embeddings are anisotropic. However, as demon-
strated in Subsection 5.1, no existing methods truly
measure isotropy. We replicate experiments by
(Cai et al., 2021), and present isotropy scores for
the vector space of token embeddings generated
from the WikiText-2 corpus for GPT (110M param-
eters) and GPT2 (117M parameters) in Figure 8, as
well as the scores for BERT (base, uncased) and
DistilBERT (base, uncased) in Figure 9.

Figure 8: The 5 scores for each of the 12 layers of GPT-
2 and GPT

Figure 9: The 5 scores for the 12 layers of BERT, and
the 6 layers of DistilBERT



Our findings using IsoScore challenge and ex-
tend upon the literature in the following ways. Con-
textualized embedding models (i) utilize even fewer
dimensions than previously thought; (ii) do not uti-
lize fewer dimensions in deeper layers; and (iii) in
agreement with Biś et al. (2021), contextualized
embedding models do not necessarily occupy a
“narrow cone” in space.

IsoScore returns values of less than 0.18 for ev-
ery considered contextualized embedding model.
GPT and GPT-2 embeddings do not even isotrop-
ically utilize a single dimension in space, in the
sense of Heuristic D.1. Using average random co-
sine similarity, Cai et al. concluded that earlier lay-
ers in contextualized embedding models are more
isotropic than layers deeper in the network. While
this may appear to be true using inaccurate mea-
sures of isotropy, there is no significant decrease
in IsoScore between the earlier and later layers of
contextualized embedding models. Biś et al. (2021)
argue that isotropy improves performance for con-
textualized embedding models and that enforcing
zero mean embeddings recovers “isotropy”. The
author’s claim to improve isotropy by subtracting
the mean vector from the point clouds of embed-
dings produced from BERT, GPT-2 and RoBERTa,
however, the authors use the partition score in at-
tempts to measure isotropy which will return values
close to 1 when the data is zero-mean. As demon-
strated throughout the paper, isotropy is strictly a
property of the covariance matrix of a distribution
and is by definition mean-agnostic.

Note that our average random cosine similarity
score finds contextualized embedding models to
be much more isotropic then previously reported.
When computing the average random cosine sim-
ilarity score for contextualized word embeddings
we sample 250,000 pairs of points. Prior studies
such as Ethayarajh (2019) and Cai et al. (2021)
sample as few as 1000 pairs of points when calcu-
lating average random cosine similarity. In both
cases, the point clouds contain millions of tokens
embedded into 768 dimensional vector space and
differences in reported scores are likely due to sam-
pling noise. We found empirically that the quantity
of points sampled should be orders of magnitude
larger than the dimension.

The notion of isotropy is often conflated with
geometry. The geometry of isotropic vector spaces,
however, will differ depending on the distribu-
tion that generates the points in space. For ex-

ample, multivariate isotropic Gaussians form n-
dimensional balls and uniform distributions form
n-dimensional cubes, yet both distributions receive
an IsoScore of 1. For an illustrated example of
points generated from different isotropic distribu-
tions, consult Appendix F. It is therefore not neces-
sarily the case that even highly anisotropic embed-
ding spaces form narrow, anisotropic cones.

6 Conclusion & Future Works

Several studies have attempted to study isotropy in
contextualized embedding models. Using mathe-
matically rigorous tests, we demonstrate that cur-
rent methods do not accurately measure isotropy.
This paper presents IsoScore: a novel method for
measuring isotropy that corrects the current misun-
derstandings in the literature. IsoScore is the only
tool that is mean agnostic, robust to scalar changes
to the covariance matrix and rotation invariant. Fur-
thermore, IsoScore scales linearly with the number
dimensions used and is stable when distributions
contain highly isotropic subspaces. Future studies
should avoid using existing methods to measure
isotropy as resulting conclusions will be mislead-
ing or altogether inaccurate.

There are several promising directions for fu-
ture work. Current studies have used inaccurate
methods to claim that increasing isotropy improves
the performance of contextualized embedding mod-
els. However, we believe that further decreasing
isotropy could improve performance, especially in
language modeling applications. IsoScore could
be used as a regularizer when fine tuning word
embeddings to penalize distributions that exhibit
isotropy.

As point clouds of data arise in nearly all deep
learning applications, IsoScore presents itself as a
useful tool to study and refine a variety of models
beyond the domain of NLP.
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B Pre-existing metrics, in detail

Average Cosine Similarity: We define the Aver-
age Cosine Similarity Score as 1 minus the average
cosine similarity of N randomly sampled pairs of
points from X . That is,

AvgCosSim(X) := 1−

∣∣∣∣∣
N∑
i=1

cos(xi, yi)
N

∣∣∣∣∣, (B.1)

where {(x1, y1), . . . , (xN , yN )} ⊆ X×X are ran-
domly chosen with xi 6= yi for all i, and cos(xi, yi)
denotes the cosine similarity of xi and yi. Some
authors define the average cosine similarity score
to be exactly the average, rather than one minus the
average. However, for ease of comparison to other
metrics, our score ensures that AvgCosSim(X) is
between 0 and 1. Under our convention, it is com-
monly believed that a score of 0 indicates that the
point cloud X is anisotropic and a score of 1 indi-
cates that X is isotropic. In Section 5, we demon-
strate that this is not the case.
Partition Isotropy Score: For any unit vec-
tor c ∈ Rn, let the partition function be
denoted as Z(c) :=

∑
x∈X exp(cTx). Mu

et al. (2017) measure isotropy as I(X) :=
(min||c||=1Z(c))/(max||c||=1Z(c)). It is believed
that a score closer to zero indicates an anisotropic
space while a score closer to one indicates an
isotropic space. Mu et al. (2017) demonstrate that
a score of 1 implies that the eigenspectrum of X is
flat. Computing I(X) explicitly is intractable since
the set of unit vectors is infinite. Accordingly, Mu
et al. (2017) approximate I(X) by

I(X) ≈ minc∈CZ(c)

maxc∈CZ(c)
(B.2)

where C is the set of eigenvectors of XTX . For
the remainder of the paper we refer to (B.2) as the
Partition Score.

Intrinsic Dimensionality: Given a point cloud
X ⊆ Rn, it is sometimes useful to assume thatX is
sampled from a manifold of dimension less than n.
For example, points in the left panel in Figure 1 are
sampled from a 1-dimensional space and points in
the middle panel are sampled from a 2-dimensional
space. Algorithms for intrinsic dimensionality aim
to estimate the true dimension of a given mani-
fold from which we assume a point cloud has been
sampled. Intrinsic dimensionality has been used to
argue that word embedding models are anisotropic
(Cai et al., 2021). For a point cloud X ⊂ Rn, it

is commonly thought that the more isotropic X is,
the closer the intrinsic dimensionality of X is to
n. Dividing the intrinsic dimensionality of X by
n provides us with a normalized score of isotropy,
which we refer to as the ID Score. We use the
maximum likelihood estimation (MLE) method to
calculate intrinsic dimensionality. For a detailed
description of the MLE method for intrinsic di-
mensionality estimation please consult (Levina and
Bickel, 2004; Campadelli et al., 2015).

Variance Explained Ratio: The variance ex-
plained ratio measures how much total variance is
explained by the first k principal components of the
data. Note that when all principal components are
considered, the variance explained ratio is equal to
1. Examining the eigenspectrum of principal com-
ponents is undoubtedly a useful tool in quantifying
the spatial distribution of high dimensional data.
However, the variance explained ratio requires us
to specify a priori the number of principal compo-
nents we wish to examine. We divide the variance
explained by the first k principal components by
k/n to convert the variance explained ratio into a
normalized score.

C Bounds on IsoScore

Proposition C.1. LetX ⊆ Rn be a finite set. Then
ι(X) ∈ [0, 1].

Proof. Define Σ to be the n × n sample covari-
ance matrix of XPCA. Let c > 0 be so that
if we define Σ̂ := c · Σ, then ‖Σ̂D‖ =

√
n.

Let us enumerate the entries of this vector as
Σ̂D = (Var(x1), . . . ,Var(xn)). In order to show
that ι(X) ∈ [0, 1], it is equivalent to show that
‖Σ̂D − 1‖ ∈ [0,

√
2(n−

√
n)], and by definition

of the Euclidian norm, the latter estimate is equiva-
lent to

2(n−
√
n) ≥

n∑
i=1

(Var(xi)− 1)2. (C.1)

But the identity ‖Σ̂D‖ =
√
n implies that∑n

i=1 Var(xi)
2 = n, so in fact (C.1) is equivalent

to

n∑
i=1

Var(xi) ≥
√
n.

If this inequality were flipped, then we could esti-



mate that

n = Var(x1)
2 + · · ·+ Var(xn)2

≤ (Var(x1) + · · ·+ Var(xn))2

< n,

which is a contradiction.

D Interpretation of IsoScore, in Detail

This appendix provides rigorous mathematical jus-
tification for the claims that we made in Appendix
A about the interpretation of IsoScore. It is split
into two parts. In Appendix D.1 we formalize, and
prove, the claim that the IsoScore for a point cloud
X is approximately the fraction of dimensions uni-
formly utilized by X . And in Appendix D.2 we
argue that IsoScore is an honest indicator of uni-
form spatial utilization.

D.1 IsoScore Reflects the Fraction of
Dimensions Uniformly Utilized

In Section A we provided an interpretation for the
value of the IsoScore ι(X) in Heuristic A.1. Intu-
itively, our heuristic says that ι(X) is roughly the
fraction of dimensions of Rn utilized by X . We
will now explain and justify this heuristic in detail.
We formalize our heuristic below.

Heuristic D.1. Suppose that a point cloud X ⊆
Rn gives an IsoScore ι(X). Then X occupies ap-
proximately

k(X) := ι(X) · n+ 1− ι(X) (D.1)

dimensions of Rn.

Note in particular that ι(X) = 0 implies
that (D.1) simplifies to a single dimension utilized
and ι(X) = 1 implies that (D.1) simplifies to all n
dimensions utilized.

In the remainder of this subsection, we will jus-
tify the above heuristic. We will make reference
to the notations and equations in Section 4. Fix
n ≥ 1 and k ∈ {1, . . . , n}, and consider the matrix
I
(k)
n . Recall that I(k)n is the covariance matrix for a
k-dimensional uncorrelated Gaussian distribution
in Rn. For example, spaces sampled using the ma-
trices I(k)3 , for k = 1, 2, 3 are rendered in Figure 1
as a line, a circle, and a ball, respectively. One can
compute directly that the IsoScores for these three
spaces are

ι(I
(1)
3 ) ≈ 0.0, ι(I

(2)
3 ) ≈ 0.5, ι(I

(3)
3 ) ≈ 1.0.

Our main insight in this section is that it is worth-
while to apply these statistics for reverse reasoning
in the following sense: suppose you have some
point cloud X ⊆ R3 which satisfies ι(X) ≈ 1/2.
Then this IsoScore should allow you to infer that
X uniformly occupies approximately 2 dimensions
of R3.

In Heuristic D.1, we provide the closed formula
(D.1) for generalizing the above reasoning to all
dimensions n. We will now prove this formula.

Proof of Heuristic D.1. Once we normalize I
(k)
n

so that its Euclidean norm is
√
n, we get that the

first k diagonal entries are
√
n/k. Therefore, the

isotropy defect is

δ(I(k)n ) =
‖Î(k)n − 1‖√
2(n−

√
n)

(D.2)

=

√
k(1−

√
n/k)2 + n− k√

2(n−
√
n)

(D.3)

=

√
n−
√
nk√

n−
√
n
.

It is natural to consider the map k 7→ δ(I
(k)
n ).

A priori, this is a discrete function defined on
{1, . . . , n}; a fortiori, this is in fact a continu-
ous, monotonically decreasing bijection on the con-
nected interval [1, n]. Therefore, the function de-
fined by

δ̃n : [1, n]→ [0, 1] : k 7→ δ(I(k)n )

is invertible, and one can compute that its inverse
is

δ̃−1n : [0, 1]→ [1, n] : d 7→ (n− d2(n−
√
n))2

n
.

The truth of this heuristic rests upon the validity
of the following assumption, which is reasonable
to use in many contexts.

Assumption Underpinning The Heuristic. The
isotropy defect corresponding to a point cloud sam-
pled using the covariance matrix I(k)n is the proto-
typical isotropy defect for any point cloud in Rn
which uniformly utilizes k dimensions.

We will now invoke this assumption. Let δ(X)
be the isotropy defect for an arbitrary point cloud
X . If we assume that we are in the nontrivial case
where δ(X) > 0, then δ̃−1n (δ(X)) is in the inter-
val [1, n). Because δ̃−1n is bijective, there exists



a unique k ∈ {1, . . . , n − 1} with the property
that δ̃−1n (δ(X)) ∈ [k, k + 1). But by construction,
[k, k + 1) = [δ̃−1n (δ(I

(k)
n )), δ̃−1n (δ(I

(k+1)
n ))). By

monotonicity of δ̃−1n , this implies that

δ(X) ∈ [δ(I(k)n ), δ(I(k+1)
n )).

Therefore, by the assumption underpinning the
heuristic, we can deduce that X is uniformly uti-
lizing between k and k + 1 dimensions of Rn. To
be specific, we say that X is uniformly utilizing
δ̃−1n (δ(X)) ∈ [k, k+1) dimensions. Recalling Sec-
tion 4, we can recognize that in Step 6, the formula
for k(X), the quantity of dimensions uniformly
utilized by X , is precisely k(X) := δ̃−1n (δ(X));
likewise, the formula for φ(X), the fraction of di-
mensions uniformly utilized by X , is φ(X) :=
δ̃−1n (δ(X))/n.

Now we are in a position to verify Equation D.1,
the main claim of Heuristic D.1. By the assumption
underpinning the heuristic, it is sufficient to verify
Equation D.1 in the case of I(k)n , for k = 1, . . . , n.
This is because all functions that we will utilize are
monotonic bijections. Using the notation in Steps
6 and 7 in Section 4, we can compute that

ι(I(k)n )(n− 1) + 1 = S(φn(I(k)n ))(n− 1) + 1

= n · φn(I(k)n )

= k(I(k)n ).

Using the formula k(X) = (n − δ(X)2(n −√
n))2/n, we can continue:

k(I(k)n ) =
(n− δ(I(k)n )2(n−

√
n))2

n

=
(n− n−

√
nk

n−
√
n

(n−
√
n))2

n
= k,

where in the penultimate equality we used Equa-
tion D.2. This completes the proof.

Because IsoScore covers a continuous spectrum,
one should carefully interpret what we mean when
we say that X occupies approximately k dimen-
sions of Rn. For example, consider the 2D Gaus-
sian distributions depicted in Figure 3. Heuris-
tic D.1 predicts k = 1.9996, 1.6105, 1.0281 di-
mensions are used when x = 1, 3, 75, respectively.
These should be interpreted as follows: “when
x = 75, the points sampled are mostly using one
direction of space” and “when x = 3, the points

sampled are using somewhere between one and two
dimensions of space.”

Heuristic D.1 suggests that an IsoScore near 1/2
means that the corresponding point cloud X occu-
pies approximately half of the dimensions of its
ambient space. We can make this reasoning rigor-
ous as follows: for any n ≥ 2, one can compute
that

ι(I(k)n ) =
k − 1

n− 1
≈ k

n
, for any k = 1, . . . , n.

(D.4)

Proof of (D.4). In Equation D.2 computed
that the isotropy defect is δ(I

(k)
n ) =√

n−
√
nk/

√
n−
√
n. If we substitute

this expression into (4.1), then we obtain the
formula ι(I

(k)
n ) = k−1

n−1 . Furthermore, one can
easily estimate that | k−1n−1 −

k
n | ≤

1
n .

Table 2 illustrates this formula in the concrete
case of R9. This formula implies the following key
relationship:

lim
n→∞

ι(I(bn/2c)n ) = 1/2.

Generalizing this line of reasoning yields our
second heuristic explanation for the meaning of
IsoScore, Heuristic 4.1. We copy it here:

Heuristic D.2. When the ambient space Rn has
large dimension, the IsoScore ι(X) is approxi-
mately the fraction of dimensions uniformly utilized
by X .

Proof of Heuristic 4.1. By the assumption under-
pinning Heuristic D.1, it suffices to show this in the
case of matrices of the form I

(k)
n . Fix α ∈ [0, 1],

and consider the covariance matrix I(bαnc)n . For
large n, the fraction of dimensions uniformly uti-
lized by I(bαnc)n is approximately α, according to
Definition 3.1. But by (D.4), we can compute that

lim
n→∞

ι(I(bαnc)n ) = lim
n→∞

bαnc − 1

n− 1
= α.

This completes the proof.

D.2 The IsoScore for I(k)n Reflects Uniform
Utilization of k Dimensions

We will now investigate what range of IsoScores
are obtained by sample covariance matrices that
utilize k out of n dimensions. It is easy to see



that these scores at least fill the interval (0, ι(I
(k)
n )],

since the map

[1,∞)→ (0, ι(I(k)n )]

x 7→ ι(diag(x, 1, . . . , 1, 0, . . . , 0))

is surjective. Conversely, we can show that this
interval is the only possible range of IsoScores cor-
responing to such covariance matrices. We make
this claim rigorous in the following proposition.
Proposition D.3. Fix n ≥ 2. For any k =
1, . . . , n, we have that

I(k)n = argmax
{
ι(J) : J utilizes k out (D.5)

of n dimensions
}
.

This result justifies the use of IsoScore for mea-
suring the extent to which a point cloud optimally
utilizes all dimensions of the ambient space be-
cause it demonstrates that ι(I(k)n ) is the maximal
IsoScore for any covariance matrix with k non-zero
entries and n− k zero entries.

Proof of Proposition D.3. In this section we let
Diag+(n) denote the set of n × n real matri-
ces which vanish away from the diagonal and
whose diagonal entries are all non-negative. The
set Diag+(n) parameterizes the set of all n ×
n sample covariance matrices after performing
PCA-reorientation. We also let Diag+(n, k) ⊆
Diag+(n) denote that subset whose first k diag-
onal entries are non zero and whose last n − k
diagonal entries are zero. The set Diag+(n, k)
parameterizes the set of sample covariance ma-
trices post-PCA reorientation which utilize k out
of n dimensions of space. Covariance matrices
in Diag+(n, k) represent point clouds with the
property that Var(xi) > 0 for i = 1, . . . , k, and
Var(xi) = 0 for i = k + 1, . . . , n.

It suffices to show that, for every J ∈
Diag+(n, k), we have that ι(J) ≤ ι(I

(k)
n ),

or equivalently, δ(J) ≥ δ(I
(k)
n ). Write

Î
(k)
n,D = (

√
n/k, . . . ,

√
n/k, 0, . . . , 0) and JD =

(a1, . . . , ak, 0, . . . , 0), where a21 + · · · a2k = n.
Then we must show that ‖JD − 1‖ ≥ ‖Î(k)n,D − 1‖,
or equivalently,
k∑
i=1

(ai−1)2 +n−k ≥
k∑
i=1

(
√
n/k−1)2 +n−k.

This latter estimate is equivalent to
k∑
i=1

ai ≤
√
nk.

By Jensen’s inequality, applied with the convex
function f(x) = x2, we have that

f

(
k∑
i=1

ai
k

)
≤

k∑
i=1

f(ai)

k
.

Simplifying, this implies that (a1+· · ·+ak)2 ≤ kn.
This completes the proof.

E Numerical Experiments

In this section, we provide explicit details of
how each test is designed. We provide code
for all experiments at: https://github.com/bcbi-
edu/p_eickhoff_isoscore.

1. Test 1: Mean Invariance. To assess whether
the five scores are mean invariant, we start
with 100, 000 points sampled from a 10-
dimensional multivariate Gaussian distribu-
tion with covariance matrix equal to the
identity and a common mean vector M =
[µ, µ, ..., µ]. We compute scores for µ =
0, 1, 2, ..., 20.

2. Test 2: Scalar Invariance. We test for the
property of scalar invariance by sampling
100, 000 points from a 5D Gaussian distri-
bution with common mean vector M =
[3, 3, 3, 3, 3] and covariance matrix equal to
λ · I5. We then compute scores for each point
cloud as we increase λ from 1 to 25.

3. Test 3: Maximum Variance. We start by
sampling 100, 000 points from a 10D multi-
variate Gaussian distribution with zero com-
mon mean vector and a diagonal covariance
matrix with nine entries equal to 1 and one
diagonal entry equal to x. In our experimen-
tal setup, we compute all five scores as we
increase x from 1 to 75.

4. Test 4: Rotation Invariance. Our baseline
point cloud X ⊂ Rn consists of 100, 000
points sampled from a 2D zero-mean Gaus-
sian distribution with a covariance matrix
equal to ( 1 0.8

0.8 1 ). We rotate X by 120◦ and
240◦. Lastly, we project X using PCA re-
orientation while retaining dimensionality to
obtain a point cloud XPCA.

5. Test 5: Dimensions Used (Fraction of Di-
mensions Used Test). For our first experi-
ment, which we term the “fraction of dimen-
sions used test,” we sample 100, 000 points
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from a 25D multivariate Gaussian distribu-
tion with a zero common mean vector and
a diagonal covariance matrix where the first
k entries are 1 and the remaining n − k di-
agonal elements are 0. We refer to k as the
number of dimensions uniformly used by our
data (see Definition 3.1). For our experiment
we let k = 1, 2, 3, ..., 25, and compute the
corresponding scores.

6. Test 5: Dimensions Used (High Dimen-
sional Test). A good score of spatial uti-
lization should allow for easy comparison be-
tween different vector spaces even when the
dimensionality of the two spaces is different.
We sample 100, 000 points from a zero-mean
Gaussian distribution with identity covariance
matrix In and increase the dimension of the
distribution from n = 2, . . . , 100.

7. Test 6: Global Stability. We generate
a “skewered meatball” by sampling 1, 000
points from a line in 3D space and increase
the number of points sampled from a 3-
Dimensional, zero-mean, isotropic Gaussian
from 0 to 150, 000.

F Geometry of Isotropy

Figure 10: Points sampled from a Uniform distribu-
tion, Poisson distribution, Student-T distribution and
ChiSquare distribution respectively

Each of the distributions illustrated in Figure 10
has a covariance matrix proportional to the identity
and is therefore maximally isotropic. Namely, the
variance is distributed equally in all directions. De-
spite receiving an IsoScore of 1, the geometry of
the point clouds are vastly different. We can only

comment on the geometry of the point cloud if the
underlying distribution of the space is known.


