
1

Briefings in Bioinformatics, 00(0), 2020, 1–16

doi: 10.1093/bib/bbaa256
Problem solving protocol

Drug–drug interaction prediction with Wasserstein
Adversarial Autoencoder-based knowledge graph
embeddings
Yuanfei Dai, Chenhao Guo, Wenzhong Guo and Carsten Eickhoff
Corresponding authors: Carsten Eickhoff, Center for Biomedical Informatics, Brown University, Providence, RI, USA. Tel: +86 13110525162;
Fax: +86 0591-22865158; E-mail: carsten@brown.edu; Wenzhong Guo, College of Mathematics and Computer Sciences, Fuzhou University,
Fujian, China. Tel: +86 13110525162; Fax: +86 0591-22865158; E-mail: guowenzhong@fzu.edu.cn

Abstract

An interaction between pharmacological agents can trigger unexpected adverse events. Capturing richer and more
comprehensive information about drug–drug interactions (DDIs) is one of the key tasks in public health and drug
development. Recently, several knowledge graph (KG) embedding approaches have received increasing attention in the DDI
domain due to their capability of projecting drugs and interactions into a low-dimensional feature space for predicting links
and classifying triplets. However, existing methods only apply a uniformly random mode to construct negative samples. As
a consequence, these samples are often too simplistic to train an effective model. In this paper, we propose a new KG
embedding framework by introducing adversarial autoencoders (AAEs) based on Wasserstein distances and
Gumbel-Softmax relaxation for DDI tasks. In our framework, the autoencoder is employed to generate high-quality negative
samples and the hidden vector of the autoencoder is regarded as a plausible drug candidate. Afterwards, the discriminator
learns the embeddings of drugs and interactions based on both positive and negative triplets. Meanwhile, in order to solve
vanishing gradient problems on the discrete representation—an inherent flaw in traditional generative models—we utilize
the Gumbel-Softmax relaxation and the Wasserstein distance to train the embedding model steadily. We empirically
evaluate our method on two tasks: link prediction and DDI classification. The experimental results show that our
framework can attain significant improvements and noticeably outperform competitive baselines.
Supplementary information: Supplementary data and code are available at https://github.com/dyf0631/AAE_FOR_KG.
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Introduction
For optimal therapeutic effect, it is often necessary to take
advantage of drug combinations. However, the intended efficacy
of a drug may be changed substantially when co-administered
alongside another agent. Formally, drug–drug interactions (DDI)
are pharmacological interactions between drug ingredients that
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can alter the function of drugs, cause adverse drug reactions
(ADR) and even medical malpractice [1]. While ideally we would
like to discover all possible interactions between drugs dur-
ing clinical trial, some unrecognized interactions may only be
revealed after the drugs are approved for clinical use. ADRs cause
roughly 100 000 fatalities [2] and 74 000 emergency room visits in
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Fig. 1. A simple instance of a DDI KG.

the United States, annually [3]. For instance, acetylsalicylic acid
(ASA), also known as aspirin, is a commonly used drug for the
treatment of fever and pain, which has both anti-inflammatory
and antipyretic effects. However, when ASA is combined with
1-benzylimidazole, the risk or severity of hypertension can be
increased. To alleviate these risks and improve quality of care,
large-scale and reliable DDI prediction becomes a key task in
clinical practice.

To date, various DDI prediction approaches have been pro-
posed to solve this issue. There are some examples from the
fields of pharmacogenomics and pharmacology including [4, 5].
However, these methods can only handle a limited range of
DDI cases because of their dependency on clinical and labo-
ratory data. Besides, this kind of method requires many char-
acteristics such as molecular structures, pharmacology, indi-
cations, etc. of each drug. For this reason, knowledge graph
(KG)-based computational prediction approaches that do not
rely on these expensive, labor-intensive features have received
ever-increasing attention due to their capability of enabling
automatic, fast assessments of possible DDIs.

DDI data can be represented as a KG in which nodes indi-
cate entities and edges denote relations. A typical DDI KG is
constructed with a series of triplet facts (h, r, t) in which h and
t represent head and tail drugs, respectively, and r indicates
the interaction between h and t. Accordingly, the DDI predic-
tion problem can be posed as a link prediction task via KG
embedding, which aims to embed each entity and relation to a
low-dimensional feature space for knowledge fusion and more
efficient computing. Figure 1 shows an example of a DDI KG.

Over the past years, several machine learning and deep learn-
ing approaches have been proposed to embed DDI KGs for pre-
dicting unknown DDIs [6–8]. Firstly, training a KG embedding
model requires negative samples and there are no confirmed
negatives in the original DDI datasets. In order to conveniently
generate enough negative samples to train the model, Bordes et
al. [9] introduced a local closed-world assumption (LCWA) into
the KG. Under the LCWA, all statements that exist in the KG
are assumed correct. Conversely, any statements that do not
exist are false. This assumption is conducive to the generation of
negative samples, as we only need to construct triplets that are
not contained in the original KG to be considered as fake sam-
ples. Most of the existing embedding models have been gener-
ating negative triplets via a uniform negative sampling strategy
[9–11]. This sampling randomly replaces the head or tail entity in
a positive triplet with a different one from the entity collection,

where all entities share the same sampling weights. Trouillon
et al. [12] evaluated the performance impact of the number of
negative triplets constructed per positive training sample. The
results revealed that generating more negatives can, up to a sat-
uration threshold, yield better performance. However, this gen-
eral sampling method usually adds only limited benefit to the
robustness and effectiveness of the derived embedding model
and may even delay model convergence as noted by Schroff et al.
[13] and Hermans et al. [14]. Thus, we utilize adversarial learning
to generate more plausible negative triplets for improving the
performance of KG representation learning. For instance, if we
want to replace the head drug in an observed triplet (Tramadol,
increase neuroexcitatory activities, Amitriptyline) to construct
a negative triplet between the two candidates ‘Ibuprofen’ and
‘Nexium’, ‘Ibuprofen’ makes for a more deceptive replacement
due to its pharmacological similarity to ‘Tamadol’. Afterwards,
this more plausible triplet can force the KG embedding model to
improve performance to distinguish its authenticity. Neverthe-
less, it is also likely to choose other irrelevant drugs that would
make it easy for the embedding model to distinguish and does
not encourage it to improve (e.g. ‘Nexium’) if the head drug is
replaced by the above random sampling mode. Our proposed
method represents all drugs in a unified feature space, and then
selects a suitable drug as a substitute to generate a deceptive
negative sample according to the spatial position and distance
between the drugs, thereby further improving the performance
of the model.

Unfortunately, adversarial learning methods such as gener-
ative adversarial networks (GANs) have not yielded satisfying
results for natural language processing tasks as the standard
GAN is limited to the continuous real number space, i.e. contin-
uous data, but cannot directly operate on discrete data such as
words. To overcome this deficiency, recent research provides a
number of feasible approaches by applying policy gradients, a
class of policy-based reinforcement learning (RL) algorithms, to
replace the traditional back propagation [15, 16].

Although these RL approaches have been proven effective,
high-variance gradient estimates make models require vast
amounts of computational resources while their complex
hyperparameters increase instability of the already difficult-
to-train GANs. In this work, we propose a new method that
introduces Gumbel-Softmax relaxation [17, 18] and adversarial
autoencoders (AAEs) based on Wasserstein distances for training
DDI embedding models steadily on discrete data. In contrast to
complicated RL mechanisms, the Gumbel-Softmax relaxation
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can efficiently simplify our model and allow for a fast iterative
adversarial learning framework without intensive RL heuristics
for accelerating the convergence of the entire model. Compared
to GANs, AAEs can control the manner in which the generator
constructs negative samples, making their outputs resemble real
data more closely. Furthermore, we use the Wasserstein distance
as an advanced metric to replace the original Jensen-Shannon
(JS) divergence in the traditional adversarial learning framework.

To this end, we first construct an autoencoder where the
latent code vector z (i.e. its hidden units) is trained to generate
more plausible entities (drugs) as negative samples. Since the
entity we intend to generate is a one-hot vector and this type
of discrete data is not differentiable in the training process, a
Gumbel-Softmax relaxation and the Wasserstein distance are
employed to handle the issue of vanishing gradients on discrete
data without policy gradient mechanisms. Then, negative and
positive triplets are jointly fed into the discriminator to obtain
the embeddings, which are regarded as the final representation
of the KG. Our novel contributions in this paper are summarized
as follows:

• We present a new approach to solve the prediction of DDIs
and their side effects. Compared with clinical trials or tra-
ditional machine learning-based methods, our approach
does not require numerous manual features to yield better
performance.

• Technically, to the best of our knowledge, we are the first
to introduce AAEs to KG representation learning. The latent
vector of the autoencoder is capable of generating more
reasonable negative samples, and the discriminator uti-
lizes these negative and positive triplets to train the KG
embedding model.

• Different from traditional adversarial learning for KG
embedding that requires intensive RL heuristics, we apply
Gumbel-Softmax relaxation and Wasserstein distance to
resolve the problem of vanishing gradients on discrete data
and accelerate the convergence of the KG embedding model.

• We evaluate the performance of the proposed model on link
prediction and triple classification tasks. The experimen-
tal results show that our model outperforms existing KG
embedding models.

The remainder of this article is organized as follows. Section 2
introduces related work on DDI detection and prediction and
several representative KG embedding models. In Section 3, we
illustrate the overall framework and training procedure of the
proposed adversarial learning model in detail. Section 4 delin-
eates benchmark datasets, parameter initialization settings and
experimental details. Section 5 provides a side-by-side qualita-
tive comparison and discussion between our results and those
obtained via existing methods. Finally, concluding remarks are
discussed in Section 6.

Related work
In this section, we introduce current research on DDI detection
and prediction. Additionally, we give a brief overview of several
prominent existing KG embedding methods.

DDI detection and prediction

DDI prediction is a key task in pharmacology. Many existing stud-
ies that obtain results on specific types of interactions depend
on in vivo and in vitro experiments. Krishna et al. [19] con-
structed a crossover study to evaluate the effects of gastric pH
values on the absorption of posaconazole. The results displayed

that both dissolution and absorption of posaconazole would be
decreased under increased gastric pH conditions (e.g. induced
via co-administration with proton pump inhibitor drugs, such
as esomeprazole or omeprazole). To reveal the clinical effect of
omeprazole on the inhibition of platelet clopidogrel, Ho et al. [20]
conducted a retrospective cohort study of 8,205 patients, finding
that the risk of adverse outcomes would be increased when
clopidogrel is accompanied by proton pump inhibitors. Menon et
al. [21] evaluated DDIs between the 3D regimen of direct-acting
antiviral agents for the treatment of chronic hepatitis C virus
infection (such as ombitasvir, Paritaprevir and dasabuvir) and
various common medications via 13 experiments. Although the
above works yield detailed comparative results, they do not scale
well due to laboratory requirements. With the advancement
of computing methods and resources, researchers moved their
attention towards large-scale structured databases and machine
learning based approaches to solve this problem.

Several studies have proposed automatic DDI discovery
schemes. For instance, Cheng and Zhao [1] introduced pheno-
typic, therapeutic, genomic and chemical structural similarity as
drug features and employed five machine learning approaches,
including k-nearest neighbors, naïve Bayes, logistic regression,
decision trees and support vector machines, to predict the
authenticity of DDIs. Li et al. [22] constructed a Bayesian network
for forecasting the combined effect of drugs by incorporating
drug molecular and pharmacological phenotypes. Lately, to
further enhance the performance of the DDI prediction model,
many semantic and topological measures between drugs
are utilized as input features for discovering potential DDIs
[23]. Muñoz et al. [24] utilized KGs as a convenient uniform
representation to integrate multiple forms of heterogeneous
data, so that the data can be represented by a unified feature
description. However, these feature-based approaches not only
rely heavily on the quality of hand-crafted features, but also
suffer from issues of data incompleteness and sparsity.

KG embedding has received increasing attention due to its
strong capability of overcoming data incompleteness and spar-
sity problems. KG embedding methods have been demonstrated
to offer competitive performance in DDI prediction tasks. Among
them, Abdelaziz et al. [25] proposed a large-scale framework for
DDI prediction, called Tiresias. It first integrated various drug-
related variables as a DDI KG, then leveraged this KG to compute
several similarity measures between all the drugs and predicted
potential DDIs via a logistic regression classifier. Celebi et al.
[26] applied several classic KG embedding algorithms such as
TransE and TransD to extract feature vectors in order to predict
potential interactions between drugs. Ma et al. [27] used multi-
view graph autoencoders to integrate multiple types of drug-
related information, and added an attention mechanism to cal-
culate the corresponding weights of each view for better inter-
pretability. Zitnik et al.[8] developed a graph convolutional neural
network in which an end-to-end model was built for multi-
relational link prediction on a multi-modal graph. Karim et al.
[28] combined ComplEx (a traditional KG embedding method)
with a convolutional-LSTM network to further refine model
performance.

In the following, we will discuss a representative range of KG
embedding techniques in greater detail.

Existing KG embedding approaches

There has been an increasing amount of literature on KG
embedding to represent both entities and relations in a low-
dimensional continuous feature space [29, 30]. We have broadly
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categorised these existing embedding methods into three
categories: translation-based methods, tensor factorization-based
methods and neural network-based methods.

Translation-based embedding methods

Mikolov et al. [31] proposed translation invariance in the
word embedding algorithm word2vec that allows words with
similar connotation to have similar representations. Following
this principle, Bordes et al. [9] proposed the TransE KG
embedding model. TransE interprets relations as translation
vectors between head and tail entities on the low-dimensional
embedding vector space, namely h + r ≈ t. A score function is
defined to measure the plausibility of each triplet fact (h, r, t).
The score indicates the distance between h + r and t, and the
function is formulated as follows:

fr(h, t) = ∥∥h + r − t
∥∥

�1/�2
, (1)

where �1, �2 are L1-norm and L2-norm respectively. It is worth
noting that the embedding model yields a low score if a triplet
(h, r, t) is valid and a high score otherwise.

Although TransE generally delivers solid performance, it
struggles to solve complex relations, such as 1 − N, N − 1,
and N − N. TransH [32] was proposed to overcome this
drawback by introducing relation-specific hyperplanes. TransR
[33] expanded relation-specific hyperplanes to relation-specific
spaces. Since then, a large number of embedding models
investigated different ways to improve performance. TransA
[10] abandoned traditional Euclidean distances and adopted
adaptive Mahalanobis distances as a better metric on account
of their flexibility and adaptability. TransG [34] proposed to
modify the model by introducing multidimensional Gaussian
distributions to replace the original conclusive numerical space
and constructed a probabilistic embedding model to represent
entities and relations.

Tensor factorization-based embedding methods

Tensor factorization is another effective approach to KG embed-
ding. RESCAL [35] is the representative approach in this direc-
tion. Under RESCAL, all triplet facts in the KG are projected
into a 3D binary tensor X to express the inherent structure,
Xijk = 1 indicates that the observed triplet (i-th entity, k-th
relation, j-th entity) exists in the graph; otherwise, Xijk = 0
refers to an unknown or non-existent triplet. Afterwards, rank-d
factorization is applied to obtain latent semantics in the KG. The
principle that this model follows is formulated as:

Xk ≈ ARkAT, for k = 1, 2, · · · , m, (2)

where A ∈ R
n×d is a matrix which has the capability of capturing

the latent semantic structure of entities and Rk ∈ R
d×d is a

matrix that models the pairwise interactions in the k-th relation.
According to this principle, the score function fr(h, t) is defined
as:

fr(h, t) = h�Mrt, (3)

where h, t ∈ R
d represent embedding vectors of entities like

in the above models, the matrix Mr ∈ R
d×d denotes the latent

semantic meanings in relation r. To simplify the computational
complexity of RESCAL, DistMult [36] restricted Mr to diagonal

matrices, i.e. Mr = diag(r), r ∈ R
d. The score function is trans-

formed as follows:

fr(h, t) = h�diag(r)t. (4)

The original DistMult model is symmetric in head and tail
entities for every relation; ComplEx [12] leveraged complex-
valued embeddings to extend DistMult to asymmetric relations.
The embeddings of entities and relations exist in the com-
plex space Cd, instead of the real space R

d in which DistMult
embedded. The score function is modified to:

fr(h, t) = Re
(
h�diag(r)t

)
, (5)

where Re(·) denotes the real part of a complex value, and t
represents the complex conjugate of t. By using this score func-
tion, triplets that have asymmetric relations can obtain different
scores depending on the sequence of entities.

SimplE [11] proposed the inverse embedding of relations and
leveraged it to calculate the average Canonical Polyadic score of
(h, r, t) and (t, r−1, h). The score function is formulated as follows:

fr(h, t) = 1
2

(
h ◦ rt + t ◦ r′h

)
, (6)

where r′ denotes the embedding of inversion relation and ◦ indi-
cates the element-wise Hadamard product. RotatE [37] proposed
a rotational model in which each relation is regarded as a rota-
tion from source entity to target entity in complex space, as t =
h ◦ r. In addition, RotatE also provided a self-adversarial negative
sampling mode, which selects negative triplets according to the
scores calculated by the current embedding model.

Neural network-based embedding methods

Deep neural networks have become popular in a multitude
of fields due to their strong generalization and representation
abilities. They have been widely used for KG embedding.

ConvKB [38] was proposed to capture semantic information
contained in entities and relations by incorporating convolu-
tional neural networks (CNN). In ConvKB, the embedding vectors
h, r and t are concatenated to a matrix as an input layer, and after
a convolution operation, the final output is obtained.

Inspired by adversarial learning, Minervini et al. [39] proposed
an adversarial set regularization method for regularizing tra-
ditional embedding models, where an adversary samples the
most plausible set of input representations. De Cao and Kipf
[40] adopted GANs to generate molecules with specific desired
chemical properties. Moreover, Wang et al. [15] and Cai et al.
[16] applied GANs to sample plausible negative training exam-
ples for KG embedding via policy gradients. They employed
the generator G(z; θ ) to construct negative triplets and utilized
the discriminator D(x; φ) as an embedding model to distinguish
artificial from real triplets.

In summary, most previous methods used random sam-
pling or GANs to generate negative training triplets. While GANs
improved model performance, they also drastically increased
computational complexity and brought instability to the training
process. In this paper, we describe a new framework based on
AAEs for improving the representation ability of models by gen-
erating high quality plausible negative samples to train the dis-
criminator. Compared with the above methods, our framework

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa256/5943784 by Brow

n U
niversity user on 12 February 2021



Prediction of drug-drug interaction 5

Fig. 2. The architecture of the proposed AAE for KG embedding. (a) The encoder of the autoencoder learns to generate plausible negative triplets for the discriminator.

(b) The decoder of the autoencoder is applied to further refine the performance of the encoder by minimizing reconstruction errors. (c) The generated negative triplet

and the original positive triplet are both fed into the discriminator, as illustrated in the right part. (d) The discriminator is trained to yield a robust and effective KG

representation model. Neuroexcitatory+ indicates the interaction ‘increase neuroexcitatory activities’.

can generate more reasonable negative samples in less time,
thereby improving the performance and practical usefulness of
the embedding model.

Method
A KG is a directed graph in which the nodes correspond to enti-
ties and the edges represent various types of relations between
pairs of entities. Given a KG composed of a collection of triplet
facts � = {(h, r, t)}, and a pre-defined embedding dimension
d, KG embedding aims to represent each entity h ∈ E and
relation r ∈ R in a d-dimensional continuous vector space,
where E and R are the sets of entities and relations, respectively.
To simplify the problem, we transform entities and relations
into uniformly sized embedding spaces, i.e. d = k. In other
words, the embedding process projects textual triplets (h, r, t)
into a dense numerical vector space, where each entity or rela-
tion is transformed to a d-dimensional vector. With this vector
representation, we can facilitate link prediction, DDI classifi-
cation and other downstream applications. In DDI KGs, drugs
are entities and interactions between drugs are represented
as relations. It is worth to note that all DDI KGs we intro-
duced and utilized only contain the names of various drugs
and interactions, and their direct relationships. Apart from that,
there are no drug properties or other additional information
available.

Figure 2 illustrates the proposed adversarial learning frame-
work. At the beginning, a head or tail drug is discarded randomly
from an authentic DDI, and the resulting fragmentary triplet

(Tramadol, increase neuroexcitatory activities, ?) is picked up
as the input of the encoder. The encoder receives it and gen-
erates a one-hot vector which indicates another drug that has a
similar effect or structure to Amitriptyline (such as Maprotiline
which obtains the highest probability) from the collection of
candidate drugs, this one-hot vector needs to be fed to both the
decoder and the discriminator. For the decoder direction, the
final outputs are two new vectors corresponding to the inputs
of the encoder. The decoder restricts them to be as close to
the inputs of the encoder as possible. As a consequence, we
can not only guarantee that the model can generate different
drugs, but also ensure that the generated drugs are proximal
to the original ones in feature space. For the discriminator
direction, the drug ‘Maprotiline’ is selected to construct the
final negative triplet (Tramadol, increase neuroexcitatory activ-
ities, Maprotiline). Finally, the negative and positive triplets are
jointly fed into the KG embedding model for learning embedding
vectors.

Autoencoder for sampling negative triplet facts

The goal of the autoencoder is to provide more plausible negative
triplets for the discriminator than what can be obtained via
traditional random negative sampling.

Shortcomings of traditional negative sampling

Since Bordes et al. [9] proposed to obtain corrupted triplets via
uniform negative sampling, many researchers have applied this
strategy to sample negative triples in the training process. This
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sampling strategy randomly selects a candidate entity from the
entity set E to replace the head or tail entity from the original
positive triplet. It is worth to note that all candidate entities in
entity set E share the same probability of being drawn.

Obviously, this sampling method cannot contribute much
to training an effective embedding model in most cases. As
an example, given a valid triplet (Tramadol, increase neuroexcita-
tory activities, Amitriptyline), our goal is to replace the tail drug
with another acceptable drug to reassociate a plausible triplet.
Given the word ‘neuroexcitatory’ in the relation and the drug type
of ‘Amitriptyline’, it is intuitive to the domain expert that the
tail drug should be a kind of pain reliever. If we choose the
candidate drug in a random manner, many constructed nega-
tive triplets such as (Tramadol, increase neuroexcitatory activities,
Esomeprazole) or (Tramadol, increase the neuroexcitatory activities,
Minoxidil) can be trivially picked up as false by the discriminator,
resulting in only infrequent parameter updates. By comparison,
another generated triplet such as (Tramadol, increase neuroexci-
tatory activities, Acetaminophen) seems to be a more reasonable
DDI, because ‘Acetaminophen’ is more pharmacologically similar
to ‘Tramadol’ than ‘Minoxidil’. It is worth noting that, although
this traditional sampling method does not perform as well as
the proposed method in most cases, when a KG is particu-
larly sparse (in other words, there are extremely few triplets
corresponding to each entity in the KG) the random sampling
method has the opportunity to select any entity as a negative
sampling option to train the model, so as to obtain a well-trained
embedding model. This article does not consider such extreme
cases.

As a consequence, we introduce an autoencoder to construct
more plausible negative triplets instead of traditional uniform
sampling. Here, the encoder aims to generate drugs as the gen-
erator in an adversarial learning framework, while the decoder
restricts the manner and type of the generated drug, forcing it
closer to the input drug and interaction. However, there is still a
‘non-differentiability’ problem in discrete data generation.

Gumbel-Softmax relaxation with discrete data

In this section, we first illustrate why training adversarial learn-
ing models with discrete data is a vital issue. From a mathemat-
ical perspective, assuming the total number of drugs (entities)
is |E|, the next generated one-hot index vector y ∈ R

|E| can be
obtained by sampling:

y ∼ σ (o) , (7)

where o ∈ R
|E| denotes the output logits of the last layer in

the generator, σ (·) indicates the Softmax function. The sampling
operation in Equation (7) implies a step function that is not
differentiable at the end of the generator output. Because the
differential coefficient of a step function is 0 almost everywhere,
we have ∂y

∂θG
= 0, a.e., where θG are the parameters of the gener-

ator. According to the chain rule, the gradients of the generator
loss lG with respect to θG are calculated as:

∂lG
∂θG

= ∂y
∂θG

∂lG
∂y

= 0 a.e. (8)

As a result, ∂lG/∂θG = 0 means that the gradients of the
generator loss cannot be propagated back to the generator via
the discriminator. In other words, the generator cannot update

its own parameters based on the feedback provided by the dis-
criminator. This phenomenon is called the ‘vanishing gradient’
or ‘non-differentiability’ issue of adversarial learning models in
discrete data domains.

From an instance point of view, even though a Softmax
output vector of the generator α = [0.25, 0.35, 0.25, 0.15] can
improve the performance of the generator to optimize α to β =
[0.05, 0.70, 0.15, 0.10] allowing localizing a specific entity, the final
sampling result has not changed, i.e. Onehot(α) = Onehot(β) =
[0, 1, 0, 0]. The identical sampling one-hot vectors are repeatedly
fed to the discriminator, so that the gradients obtained by the
discriminator are inoperative, and the convergence direction of
the generator is indistinct, no matter how powerful the discrim-
inator may be.

In order to solve the ‘non-differentiablity’ issue, this paper
leverages a Gumbel-Softmax relaxation technique which can
approximate patterns sampled from a categorical distribution
by defining a continuous distribution on the simplex. There are
two parts in the Gumbel-Softmax relaxation: (1) The Gumbel-
Max trick. Following previous studies proposed by Jang et al. [17]
and Maddison et al. [18], the sampling in Equation (7) should be
reparametrized as follows:

y = one_hot

(
arg max

1≤i≤|E|

(
oi + gi

))
, (9)

where oi is the i-th element of o and g1, · · · , g|E| are i.i.d. samples
drawn from a standard Gumbel distribution, i.e. gi = log(− log Ui)
with Ui ∼ Uniform(0, 1). (2) Relaxing the discreteness. So far
the ‘arg max’ operation in Equation (9) is still non-differentiable.
We employ the Softmax function as a differentiable, continuous
approximation to further approximate it, and calculate a |E|-
dimensional sample vector ŷ. Each entry in ŷ is acquired by:

ŷi = exp
((

(oi) + gi
)
/τ

)
∑|E|

a=1 exp
((

(oa) + ga
)
/τ

) , (10)

where τ > 0 is an adjustable parameter referred to as the inverse
temperature. When the temperature τ approaches 0, the sampled
vectors from the Gumbel-Softmax distribution are equal to one-
hot vectors and the Gumbel-Softmax distribution becomes iden-
tical to the categorical distribution. It is worth noting that, in this
way, ŷ can be differentiated with respect to o, we can utilize ŷ
to replace one-hot vector y as the final output of the generator.
Consequently, the ‘non-differentiability’ issue is solved by taking
advantage of the Gumbel-Softmax relaxation. The generator (the
encoder part of our autoencoder) can smoothly generate one-hot
vectors that indicate plausible drugs.

Autoencoder architecture

In the generator, each drug and interaction are initially trans-
formed from a one-hot index vector to a specific embedding
feature space associated with two embedding matrices, one for
drugs, indicated by E|E|×d, and one for interactions, indicated by
R|R|×k, |E| and |R| are the total numbers of drugs and interactions,
respectively. In this paper, the embedding dimensionality of
drugs is identical to that of interactions, i.e. d = k. Because
of this setting, we can concatenate the embedded vectors of
head drug h and interaction r, and reshape it as an input A =
Reshape([h, r]) to the 2D convolutional network layer which has
been shown to extract available features with filters ω. A feature
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map tensor T ∈ R
b×m×n is calculated through this layer, where b

is the number of feature maps with dimensions m and n. After
that, we reshape the tensor T into a single vector t ∈ R

bmn, and
then transform it into an |E|-dimensional feature vector by using
the projection matrix W = R

bmn×|E|. Finally, the Gumble-Softmax
relaxation described above is applied to generate a plausible tail
drug. Mathematically, the one-hot vector of drug v is calculated
as:

v = g
(
Re(Re([h; r] ∗ ω)W)

)
, (11)

where Re(·) represents the reshape operation, and g(·) is the
Gumble-Softmax relaxation. The output of the generator is a
one-hot index vector that refers to a specific drug. This drug,
when associated with the inputs of the generator including head
drug and interaction forms the corrupted triplet.

The one-hot vector v acts as the input, given by two linear
network layers. In order to invoke the restriction of the autoen-
coder forcing the neural network to capture only significant
features of the data, there are two outputs in the decoder. These
two output dimensions are |E| and |R|, corresponding to the
dimensions of the two generator inputs.

KG embedding discriminator

The discriminator used in our framework is constructed follow-
ing previous research. As described in Section 2, the individ-
ual models have different structures and score functions. The
embeddings of drugs and interactions are obtained by mini-
mizing the ranking loss associated with positive and negative
triplets. Different from previous models in which negative sam-
ples are generated via random sampling from whole drug set,
we apply an autoencoder to construct more plausible triplets to
refine the performance of the model.

Training strategy

The training procedure is comprised of three main parts: i) the
parameter update of the autoencoder in which G and A indicate
the generator (the encoder) and the decoder, respectively; ii)
the parameter update of the discriminator D; iii) the parameter
update of the generator G.

The autoencoder is designed to learn an effective representa-
tion of data. In this paper, we employ the encoder network G(z; θ )
to generate high-quality negative drugs and apply the decoder
network A(x; η) to restrict the sampling direction to obtain more
plausible samples. To update parameters θ and η, we train the
autoencoder by minimizing the reconstruction error LG,A:

min LG,A = min
(μ=θ ,η)

‖x − A (G (z; θ) ; η)‖2 . (12)

The goal of the discriminator network D(x; φ) is to distinguish
a sample x as originating either from the real distribution pr(x)
or the generator pθ (x). Given an original training sample (x, y),
y ∈ {1, −1} signals whether it is a true sample from pr(x) or a
generated sample from pθ (x), the optimization objective of the
discriminator LD is to minimize cross-entropy:

min LD = min
φ

− (
y log p(y = 1|x) + (1 − y) log p(y = 0|x)

)
. (13)

If the distribution p(x) is a mixture of distributions pr(x) and
pθ (x) in equal proportions, i.e. p(x) = 1

2 (pr(x)+pθ (x)), then Equation

(13) can be rewritten as:

min LD = min
φ

−
(
log D(x; φ) + log(1 − D(G(z(i); θ ); φ))

)
. (14)

The goal of the generator is the opposite of the discriminator,
the generator tries to construct negative samples which can fool
the discriminator into confusing a negative sample for a real one.
Its objective function LG is formulated as:

min LG = min
θ

(
log(1 − D(G(z; θ ), φ))

)
. (15)

Compared with a traditional single-objective optimization
task, the optimization goals of these two networks in the adver-
sarial game are extremely challenging. There are many potential
issues in the traditional adversarial network training process
such as training instability and difficulty, uninformative loss
functions of generator and discriminator, and a lack of diversity
in the generated samples.

These problems are caused by the attempt to minimize the
JS divergence between the real distribution pr(x) and the gener-
ated distribution pθ (x). The JS divergence can only be computed
when two distributions P, Q have overlapping parts. When these
two distributions do not overlap or the overlapping parts are
negligible in size, their JS divergence is identically equal to
log 2. That means that when the real distribution pr(x) and the
generated distribution pθ (x) have no overlap, the outputs of the
discriminator are 0 for all generated data, i.e. D(G(z, θ )) = 0, ∀z. As
a result, the gradients of the generator vanish.

Inspired by Wasserstein GANs [41] in which Wasserstein
distance (also known as Earth-Mover distance) is introduced as
a more robust metric to replace the JS divergence, we use this
distance measure to improve the performance of our KG embed-
ding framework in this article. Given a real distribution pr(x)
and a generated distribution pθ (x), the 1st-Wasserstein distance
between them is formalized as:

W
(
pr, pθ

) = inf
γ∼�(Pr ,Pθ )

E(x,y)∼γ [‖x − y‖], (16)

where �(Pr, Pθ ) is the set of all possible joint distributions with
marginal distribution γ (x, y). When there are no overlapping
or slightly overlapping parts between two distributions, the JS
divergence becomes constant. In contrast, the 1st-Wasserstein
distance can measure distances between two non-overlapping
distributions.

Equation (16) is difficult to calculate directly, and needs to be
transformed into a solvable form via the Kantorovich-Rubinstein
duality theorem [42]. According to this theorem, the Wasserstein
distance between two distributions can be converted into an
upper bound on the expected difference between distributions
pr and pθ for a function that satisfies the K-Lipschitz continuum.
We rewrite the 1st Wasserstein distance:

W
(
pr, pθ

) = 1
K

sup
‖f‖L≤K

(
Ex∼pr [f (x)] − Ex∼pθ

[f (x)]
)

, (17)

where f (·) is the K-Lipschitz function, that satisfies the following:

‖f‖L � sup
x�=y

|f (x) − f (y)|
|x − y| ≤ K. (18)

If a function is differentiable and its derivatives are bounded,
then this function is a Lipschitz continuous function. Because
the discriminator neural network D(x; φ) satisfies the above con-
ditions, it is also a Lipschitz continuous function, allowing us to
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8 Dai et al.

Table 1. Statistics of the data sources

Datasets #Drugs #DDI Types #Train # Valid #Test

DeepDDI 1,710 86 153,828 19,228 19,228
Decagon 637 200 897,446 112,181 112,181

approximate the upper bound in Equation (17) as:

min
φ

− (
Ex∼pr [D(x; φ)] − Ex∼pθ

[D(x; φ)]
)

. (19)

Different from standard discriminator networks in which the
final layer is a sigmoid function over an output range of [0, 1], at
this point, we only need to find a network D(x; φ) that maximizes
the difference in expectations between the two distributions pr

and pθ . As a consequence, the final layer in our discriminator
D(x; φ) is a linear layer, and its range is not limited. That means
that, for real samples, the score of D(x; φ) should be high, and for
samples generated by the model, low scores are expected.

Moreover, to make D(x; φ) satisfy the K-Lipschitz continuity
condition, we can approximate it by limiting the range of the
parameter φ, such that φ ∈ [−c, c], c is a relatively small positive
number.

The goal of the generator is to minimize the Wasserstein
distance, making the real distribution pr and the generated
distribution pθ coincide as much as possible, i.e.

min
θ

−Ez∼p(z)[D(G(z; θ ); φ)]. (20)

Because D(x; φ) is an unsaturated function, the gradients
of the generator parameters θ will not disappear. This solves
the problem of instability in original adversarial framework. In
addition, by replacing the JS divergence by the Wasserstein dis-
tance, the objective function of the generator in this framework
can alleviate the model collapse problem to a certain extent
and make the generated samples more diverse. The detailed
procedure of this adversarial framework for KG embedding is
described in Algorithm 1.

Experiments
In this section, we first describe the experimental datasets, then
introduce important hyper-parameter settings and comparison
methods for our experiment. Afterwards, link prediction and
DDI classification experiments are constructed for comparing
performance of the proposed methods with benchmark and the
state-of-the-art models. Finally, we project the high-dimensional
embedding feature space to two-dimensions for visual inspec-
tion of qualitative example outputs.

Datasets

We conduct our link prediction and DDI classification exper-
iments on two widely used public datasets: DeepDDI and
Decagon. For both datasets, we randomly sample 80% of drug-
drug pairs as training data, 10% as validation data and the
remaining 10% as test data. Statistics of these two datasets are
collected in Table 1.

DeepDDI [7] is composed of 1,710 drugs and 86 different
interaction types from DrugBank [43] capturing 192,284 drug-
drug pairs as samples. 99.87% of drug-drug pairs only have one
type of DDI.

Decagon [8] is composed of 637 drugs and 200 different inter-
action types from the TWOSIDES dataset [44] capturing 1,121,808

.

drug-drug pairs as samples. We follow common practice by
sampling 200 medium frequency DDI types ranging from Top-
600 to Top-800, ensuring that every DDI type has at least 90 drug
combinations. 73.27% of drug-drug pairs have more than one
type of DDI.

Comparison methods

To comprehensively evaluate the performance of our proposed
model, we select several representative methods from the three
categories of KG embedding as baselines to be compared with
our approach. These baselines are described as follows:
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Prediction of drug-drug interaction 9

• TransE [9] represents both entities and relations in a low-
dimensional feature space, and interprets relations as
translation operations to concatenate the entities.

• DistMult [36] proposes a multi-relational learning method
in which the bilinear objective is effective at capturing
relational semantics.

• ComplEx [12] describes a simple tensor factorization
method using embedding vectors with complex values to
handle symmetric and asymmetric relations.

• KBGAN [16] introduces an adversarial learning framework
for KG embedding in which a generator is applied to sam-
ple negative triplets for refining the performance of the
discriminator.

• SimplE [11] develops an embedding method based on
Canonical Polyadic decomposition that extends the model
to learn the two embedding vectors of each entity
independently.

• RotatE [37] embeds entities as complex-value vectors and
defines relations as rotations from the head entity to the
tail in a complex vector space. In addition, it utilizes a
new self-adversarial negative sampling method to train the
embedding model.

Link prediction

Link prediction is a characteristic task which aims to infer the
missing drug when given an existing drug and interaction query.
Concretely, the target of link prediction is to predict the missing
drug t if given (h, r) or predict h given (r, t). Results are obtained
via ranking by discriminator scores.

Metrics

For each DDI (h, r, t) in the test set, the real head drug (or tail drug)
is circularly replaced by all drugs in the drug set E. Then, the
scores corresponding to all triplets are computed, all scores are
ranked in descending order.

However, some reconstructed DDIs might coincidentally be
authentic in the DDI KG. In this case, the reconstructed DDI
which is a true fact might yield a high ranking, resulting in an
inaccurate assessment. To avoid this situation, following Bordes
et al. [9], we employ the ‘Filtered’ setting to eliminate all recon-
structed DDIs which appear either in the training, validation, or
test datasets. Finally, model performance is measured in terms
of:

• MR: the average rank of the real entities.
• MRR: the average reciprocal rank of the real entities.
• HITS@N%: the proportion of real entities that ranked in the

top N. Here, we specially choose N = 1, 3, 10 to validate the
performance of compared models.

It should be noted that good performance is indicated by low
MR and high MRR and HITS@N% scores.

Training protocol

We utilize the Adagrad self-adaptive optimizer for training, and
perform parameter optimization via limited grid search: the
learning rate of the generator α ∈ {0.01, 0.005, 0.001}, the learning
rate of the discriminator β ∈ {0.5, 0.1, 0.05, 0.01}, the size of drug
and interaction embedding vectors d ∈ {50, 100, 200}, the mini-
batch size m ∈ {256, 512, 1024}, the number of discriminator
training iterations per generator iteration ndis ∈ {1, 2, 5} and the

number of overall training iterations e ∈ {300, 500, 700, 1000}. The
final parameter settings are determined on the validation set.

On the DeepDDI dataset, the best configurations are {α =
0.001, β = 0.05, d = 200, m = 512, ndis = 1, e = 300} for our model
with ComplEx, {α = 0.001, β = 0.1, d = 200, m = 512, ndis = 1, e = 300}
for our model with SimplE and {α = 0.001, β = 0.5, d = 200, m =
512, ndis = 2, e = 500} for our model with RotatE. On the Decagon
dataset, the best configurations are {α = 0.005, β = 0.5, d = 200, m
= 1024, ndis = 1, e = 1000} for our model with ComplEx, {α = 0.005,
β = 0.5, d = 200, m = 512, ndis = 2, e = 1000} for our model with
SimplE and {α = 0.005, β = 0.5, d = 200, m = 512, ndis = 5, e = 1000}
for our model with RotatE. More details about parameter settings
are illustrated in Appendix A.

Comparison with state-of-the-art models

We adopt the above configurations to train our model and com-
pare our results to state-of-the-art methods. Table 2 shows a
detailed comparison of the proposed approach and comparative
methods on the two standard benchmark datasets. We can
observe that:

• On both datasets, the KG embedding models trained via
our proposed adversarial framework obtain a better perfor-
mance on all metrics compared with other state-of-the-art
methods. Especially ComplEx model we trained, it achieved
the best performance on both datasets.

• As early models in KG embedding, TransE and DistMult
have their inherent limitations in expressiveness compared
with current methods. These issues are unlikely to be
completely compensated by advanced training approaches.
That is the reason against training them via adversarial
learning in the experiment. And ComplEx and SimplE,
which can be regarded as extension version of DistMult,
achieve an improvement on these metrics by introducing
complex-valued embeddings.

• Compared with these models with uniform negative sam-
pling, KBGAN and RotatE also yield good performances on
the two benchmark datasets. Especially, KBGAN achieves
the 2nd best result in MR and RotatE achieves the 2nd best
result in HITS@1% on the Decagon dataset. The pivotal fac-
tor to their good performance is that they also utilize adver-
sarial learning to train the model. More detailed analyses
are provided in Section 5.1.

• On the DeepDDI datasets, the proposed framework can
improve the performance by an average of 3 points of
HITS@10% beyond the original methods. Even under the
increased complexity of the Decagon dataset that includes
more interaction types and 73.27% drug-drug pairs having
more than one type of interaction, we observe an average
improvement of 1 percentage point.

DDI classification

DDI classification is an important pharmacological task that
aims to determine the authenticity of a DDI triplet. As some
existing articles [6, 7, 28] investigate DDI prediction, we follow
them in casting DDI classification as a multi-label interaction
prediction problem.

Given a pair of drugs, we first construct DDI triplets by repeat-
edly adding each interaction in the interaction set R into the pair
of drugs, then estimate the confidence in every generated triplet.
Those interactions corresponding to high-score triplets are the
ones we want to obtain.
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Metrics

• ROC-AUC: the area under the receiver operating character-
istic curve.

• PR-AUC: the area under the precision-recall curve.
• P@K: the mean percentage of true predicted labels among

TOP-K over all samples. In this paper, K = 1, 3, 5 are selected
as evaluation indicators to estimate the performance of
models.

Training protocol

In this task, we use the models trained for link prediction. Thus,
all settings and hyper-parameter configurations are retained
from above.

Comparison with state-of-the-art models

The DDI classification results are displayed in Table 3. Since
TransE and DistMult are comparably primitive models, their
performance is not expected to be convincing for this task and
the corresponding models are not included in this experiment.
As can be seen from Table 3:

• Similar to the link prediction task, our proposed method
achieves consistent improvements in this scenario. On both
datasets, the proposed framework refines the performance
of all baseline KG embedding models.

• Where the improved ComplEx method outperformed other
models on link prediction, for the classification task,
the improved RotatE method yields the best results on
the DeepDDI dataset while the improved SimplE method
obtains the best performance on Decagon.

• The performance of RotatE is highly variable across
datasets. The improved model yields the best performance
in four of the five metrics on the DeepDDI dataset (PR-AUC,
P@1, P@3 and P@5). Even the P@5 results rank a close 2nd.
However, on the Decagon dataset, RotatE and its adversarial
training version show the worst results among all methods.
We will discuss the specific reasons for these results in
Section 5.2.

• On the DeepDDI datasets, the proposed framework can
improve the performance by an average of 2 points of PR-
AUC beyond the original methods. Even under the increased
complexity of the Decagon dataset, we observe an average
improvement of 0.6 percentage point.

Discussion
In the following we analyze and discuss the results observed in
the above experiments and in order to demonstrate the effect of
our model more graphically, include a visual representation of
the model.

Link prediction

On both standard benchmark datasets, the KG embedding mod-
els using our adversarial framework gain better performance
than existing methods on all metrics. KBGAN and RotatE also
obtain good performance by introducing adversarial mecha-
nisms to generate negative samples. The results demonstrate
that the adversarial learning has the capability to construct
more plausible triplets than random sampling does, and that
these samples are conducive to improving the performance of
the embedding models. The concrete adversarial mechanism
proposed in this work differs from what is described in existing
literature.

RotatE proposed a self-adversarial negative sampling mode,
which selects negative triplets in accordance with scores calcu-
lated by the current KG embedding model. More specifically, in
the traditional model, the weight of each negative sample in the
loss function is equally large:

L = − log σ
(
γ − fr(h, t)

) −
n∑

i=1

1
k

log σ
(
fr

(
h′

i, t′
i

) − γ
)

, (21)

where σ denotes the sigmoid function, γ indicates a fixed mar-
gin, and fr(h

′
i, t′

i) is the score of the i-th negative sample. RotatE
first calculates the score of each negative sample according
to the current embedding model, and then utilizes a Softmax
operation to convert these scores into the weight corresponding
to the negative sample. Finally, these weights are employed to
calculate the total loss. Its mathematical definition is given by:
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where α indicates the temperature of sampling. Although the
training time of this method is shorter than the general genera-
tive adversarial framework on account of removing the genera-
tor, the performance of the original RotatE is not as convincing as
ours. As this original formulation lacks the game-style training
process, the discriminator cannot compete with the generator
and improve one another.

Our negative sampling strategy introduces an integral gener-
ative adversarial framework for better training of the discrim-
inator that is similar to KBGAN. Compared with KBGAN, our
proposed method has two advantages: 1) On top of the generator,
we add a decoder module that turns the original negative sam-
pling into an autoencoder framework. This scheme ensures the
fake drug generated by the generator to not deviate too far from
the real one, thereby improving the plausibility of the negative
sampling; 2) As it is not possible to use discrete data directly
in the original GANs, where the discrete sampling step prevents
gradients from propagating back to the generator, KBGAN relies
on RL to achieve its goal. However, increased computational cost
and unstable training are inherent problems in RL. Our method
can solve both problems, as shown in Figure 4.

To compare the negative samples generated by different sam-
pling strategy more intuitively, we also visualize the corrupted
triplets which are constructed by the generator and random
sampling, respectively, to further stress this point in Table 4.

Finally, it should be noted that this article focuses on compar-
ing the impact of different negative sampling methods on model
performance under the same conditions. As a consequence, we
only utilize ranking-based loss functions which have a single
output to construct our experiments. Instead, to obtain better
end-to-end performance, KG embedding could also have been
cast as a multi-class evaluation problem by employing multi-
class based loss formulations that may lead to better down-
stream performance.

DDI Classification

The same algorithm has different performance in link prediction
and DDI classification tasks. This indicates that the two tasks
measure different performance aspects of the KG embedding
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12 Dai et al.

Fig. 3. Illustrations of KG embedding vectors. (a) An overview of embedding vectors after dimensionality reduction. (b) The enlarged selection in the rgb 1,0,0red circle

(the right one in (a)) contains mostly anti-fungal drugs. (c) The enlarged selection in the rgb 0,1,0green circle (the bottom one in (a)) contains mostly corticosteroids.

(d) The enlarged selection in the yellowyellow circle (the top one in (a)) contains asthma medication. As we can see, the drugs in each of the above circles have similar

effects or categories. This illustration proves that our model follows the translation invariance criterion.

Fig. 4. Run times for each epoch on DeepDDI dataset. We plot the training times of KBGAN and our model in which ComplEx, SimplE and RotatE are as their discriminator

in 200 dimensions, respectively.

model. The result stresses the flexible adaptability and exten-
sibility of our framework to different tasks.

The performance of RotatE varies greatly between the two
datasets. A likely explanation lies in RotatE’s fixed composition
method [37], utilizing the element-wise Hadamard product (r1 ◦
r2). For instance, given data on three persons (a, b, c), where b
is the elder brother (marked as r1) of a and c is the older sister
(marked as r2) of b, we can easily infer that c is the older sister of
a. The relation between c and a is r2 rather than r1◦r2. Perhaps this
composition method can infer additional information when the
number of available relations is small, but once the number of

observed relations increases, this capability will no longer yield
added value.

Analysis of learned embeddings

To highlight the capabilities of our proposed framework in a
qualitative manner we include two visualization experiments:
negative samples constructed by random mode versus the gen-
erator, and an illustration of KG embedding vectors. It is worth to
note that our model has access to only the structure of the graph
in the form of triplets and is agnostic of any other features and
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Table 4. Some instances of negative samples constructed by random and generator sampling from the DeepDDI dataset. In this table, all drugs
are shown in boldface and all interactions are denoted by star (�). Additionally, there is a parenthesis below each drug, which contains the
function or character of the drug. The triplets in the 1st column are positive, and the underlined drug signifies that it would be replaced by
other drugs in the next two columns. The replacement drugs sampled randomly are listed in the 2nd column, and the 3rd column displays the
drugs generated by our method.

Positive triplets Random sampling Generator sampling

Midazolam (hypnotic sedative) Lumefantrine (antimalarial) Methadyl acetate (narcotic analgesic)
� increases the risk of adverse effects Diltiazem (antihypertensive) Levacetylmethadol (narcotic analgesic)
Dezocine (partial opiate) Pefloxacin (antibacterial) Nalbuphine (narcotic)
Treprostinil (treatment of pulmonary hypertension) Carmustine (treatment of brain tumors) Ridogrel (prevention of thrombo-embolism)
� increases the antiplatelet activities Plicamycin (antineoplastic antibiotic) Milrinone (vasodilator)
Tirofiban (prevention of blood clotting) Pipazethate (antitussive) Trapidil (vasodilator and anti-platelet agent)
Indapamide (thiazide-like diuretic) Mefenamic acid (anti-inflammatory) Hydrochlorothiazide (thiazide diuretic)
� decreases the metabolism Rolapitant (Neurokinin-1 receptor antagonist Chlorthalidone (thiazide-like diuretic)
Saquinavir (HIV protease inhibitor) Kappadione (Vitamin K derivative) Chlorothiazide (thiazide diuretic)

properties. Therefore, we cannot easily utilize visualization via
attention mechanisms, as our input does not represent specific
features or characteristics.

Table 4, compares traditional random negative samples with
generated ones. We can note that the generator is able to
select more semantically relevant drugs as negative samples.
For instance, given a real triplet (Midazolam, increases the risk of
adverse effects, Dezocine), the generator adopts three tail drugs,
i.e. Methadyl acetate, Levacetylmethadol and Nalbuphine. All three
drugs, similar to Dezocine, have narcotic effects. Thus, the
negative triplets constructed by these drugs are more plausible
and potentially deceptive.

Given such high-quality negative triplets, we can train better
KG embedding models which have strengthened representa-
tion and generalization capabilities. Similar to word embedding,
KG embedding also follows a basic principle that entities with
similar connotation should have similar representations. We
demonstrate this by projecting the trained drug vectors into
a two-dimensional space to validate whether they satisfy this
principle. Figure 3 shows an illustration of KG embedding vectors
after dimensionality reduction.

Embedding vectors are projected to two-dimensional space
by applying UMAP dimensionality reduction [45] (Figure ??).
We select three regions of the embedding space and zoom in
on them to observe if the drugs in those areas are related in
indication or category. Figure ?? lists 10 drugs in the red circle
with consistently anti-fungal effect. Similarly, the vast majority
of drugs in the yellow region are corticosteroids, and the green
region contains asthma medication. This illustration also intu-
itively supports the effectiveness of our model from a qualitative
perspective.

It should be noted that this article focuses on improving the
performance of KG embedding models, while ignoring the com-
parison with clinical trials or traditional machine learning based
methods. These older methods often do not provide datasets or
the datasets are too small to train modern KGE models such as
ours. We hope to remedy this limitation in future work.

Complexity and training time analysis

The training time complexity of all models introduced in this
experiment, including TransE, DistMult, ComplEx, SimplE and
RotatE, is O(d) where d denotes the dimensionality of the embed-
ding space. Since KBGAN and our proposed framework both
consist of two parts, a generator (an autoencoder for our frame-
work) with O(d) time complexity and a discriminator with O(d)

time complexity, the time complexity of these two frameworks
remains linear in d. However, as we mentioned above, policy
gradient based methods can be unstable in the training process,
while our proposed method can complete optimization more
efficiently.

Figure 4 plots the runtime of 300 training epochs of KBGAN
and our model on DeepDDI. Both models use ComplEx, SimplE
and RotatE as their discriminator. The result indicates that our
method effectively shortens the training time compared with
policy gradient based GANs. Moreover, because our model and
KBGAN both can be divided into two major modules: generator
and discriminator, the number of parameters will be greater than
that of a single embedding model. Thus, although their formal
complexity is the same as that of single embedding models,
these two adversarial learning frameworks will require more
time to complete the training process.

In addition to the complexity of the model, the size of the
KG, including the total number of entities and relations and
the resulting number of triplets, are also significant indicators
that affect training time. Models on the DeepDDI dataset require
more time to train than those on Decagon, because the number
of entities in DeepDDI is significantly greater than in Decagon.

Conclusions
The goal of this study is to find a new approach to negative
sampling that improves the performance of DDI KG embedding
models. In this paper, we propose an adversarial learning frame-
work based on Wasserstein distances for this task. We evaluate
the proposed method on link prediction and DDI classification
tasks. Our experiments on two standard collections confirm
that the performance of all baseline models can be significantly
improved using our adversarial learning framework.

The approach has several major advantages over existing KG
embedding models. First, we introduce an AAE framework to
represent DDI KGs. The autoencoder is employed to generate
more plausible drugs as negative samples, and these negative
triplets are fed to the discriminator along with authentic posi-
tive ones for improving the performance of embedding models.
Our approach also utilizes a Gumbel-Softmax relaxation and
Wasserstein distance to handle vanishing gradient issues on
discrete data. Compared with traditional policy gradients in RL,
the proposed method can complete optimization tasks more
efficiently. Most notably, the work presented here can be applied
to refine the performance of most existing models without the
need for major modifications.
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Our method is not limited to the DDI domain. Going beyond
the application and scope of this immediate work, future work
will include evaluating the benefits the model presented here
holds for other graph embedding tasks such as recommenda-
tion, classification and retrieval settings on hierarchical data.

Supplementary data
Supplementary data and code are available at https://github.co
m/dyf0631/AAE_FOR_KG.
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24. Muñoz E, Nováček V, Vandenbussche P.-Y. Facilitating pre-
diction of adverse drug reactions by using knowledge graphs
and multi-label learning models. Brief Bioinform 2019; 20(1):
190–202.

25. Abdelaziz I, Fokoue A, Hassanzadeh O, et al. Large-scale
structural and textual similarity-based mining of knowledge
graph to predict drug–drug interactions. J Web Semant 2017;
44:104–117.

26. Celebi R, Yasar E, Uyar H, et al. Evaluation of knowledge graph
embedding approaches for drug-drug interaction prediction using
linked open data. In: Proceedings of the 11th International Con-
ference Semantic Web Applications and Tools for Life Sciences,
Aachen: CEUR-WS.org, 2018.

27. Ma T, Xiao C, Zhou J, et al. Drug similarity integration through
attentive multi-view graph auto-encoders. In: Proceedings of
the 27th International Joint Conference on Artificial Intelligence,
2018, 3477–3483.

28. Karim MR, Cochez M, Jares JB, et al. Drug–drug interac-
tion prediction based on knowledge graph embeddings and
convolutional-lstm network. In: Proceedings of the 10th ACM
International Conference on Bioinformatics, Computational Biology
and Health Informatics, New York: Association for Computing
Machinery, 2019, 113–123.

29. Wang Q, Mao Z, Wang B, et al. Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering, 29(12): 2724–2743, 2017.

30. Ji S, Pan S, Cambria E, et al. A survey on knowledge graphs:
Representation, acquisition and applications. Preprint arXiv:
2002.00388, 2020.

31. Mikolov T, Sutskever I, Chen K, et al. Distributed represen-
tations of words and phrases and their compositionality. In

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa256/5943784 by Brow

n U
niversity user on 12 February 2021

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa256#supplementary-data
https://github.com/dyf0631/AAE_FOR_KG
https://github.com/dyf0631/AAE_FOR_KG


Prediction of drug-drug interaction 15

Advances in Neural Information Processing Systems, New York:
Curran Associates, Inc., 2013, 3111–3119.

32. Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph
embedding by translating on hyperplanes. In: Proceedings
of the 28th AAAI Conference on Artificial Intelligence, 2014,
1112–1119.

33. Lin Y, Liu Z, Sun M, Y. Liu, Zhu X. Learning entity and relation
embeddings for knowledge graph completion. In: Proceedings
of the 29th AAAI Conference on Artificial Intelligence, 2015, 2181–
2187.

34. Xiao H, Huang M, Zhu X. Transg: A generative model for
knowledge graph embedding. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics,
volume 1, 2016, 2316–2325.

35. Nickel M, Tresp V, Kriegel H.-P. A three-way model for
collective learning on multi-relational data. In: Proceed-
ings of the 28th International Conference on International Con-
ference on Machine Learning, Brookline: JMLR, Inc., 2011,
809–816.

36. Yang B, Yih SW, He X, et al. Embedding entities and
relations for learning and inference in knowledge bases.
In: Proceedings of the 2015 International Conference on
Learning Representations, Massachusetts: openreview.net,
2015.

37. Sun Z, Deng Z.-H, Nie J.-Y, Tang J. Rotate: Knowledge
graph embedding by relational rotation in complex space.
In: International Conference on Learning Representations,
Massachusetts: openreview.net, 2019.

38. Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D. A novel
embedding model for knowledge base completion based
on convolutional neural network. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics, vol. 2, 2018, 327–333.

39. Minervini P, Demeester T, Rocktäschel T, Riedel S. Adversar-
ial sets for regularising neural link predictors. In: Uncertainty
in Artificial Intelligence-Proceedings of the 33rd Conference, UAI
2017. Curran Associates Inc., 2017.

40. De Cao N Kipf T. MolGAN: An implicit generative model
for small molecular graphs. In: ICML 2018 workshop on The-
oretical Foundations and Applications of Deep Generative Models,
Brookline: JMLR, Inc., 2018.

41. Arjovsky M, Chintala S, Bottou L. Wasserstein generative
adversarial networks. In: International Conference on Machine
Learning, 2017, 214–223.

42. Villani C. Optimal Transport: Old and New, vol. 338. Berlin:
Springer Science & Business Media, 2008.

43. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur
D, Gautam B, Hassanali M. Drugbank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Res 2008;
36(suppl_1): D901–D906.

44. Tatonetti NP, Patrick PY, Daneshjou R, Altman RB. Data-
driven prediction of drug effects and interactions. Sci Transl
Med 2012; 4(125): 125ra31–125ra31.

45. McInnes L, Healy J, Melville J. Umap: Uniform manifold
approximation and projection for dimension reduction. Jour-
nal of Open Source Software 2018; 3(29): 861.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa256/5943784 by Brow

n U
niversity user on 12 February 2021



16 Dai et al.

Appendix

A Parameter settings

On the DeepDDI dataset, the training and testing time of the our
proposed KG embedding model is 23h : 58m : 02s for ComplEx;
18h : 28m : 48s for SimplE and 19h : 04m : 18s for Rotate in
200 dimensions. On the Decagon dataset, the training times
are 1d : 19h : 37m : 56s for ComplEx; 2d : 3h : 23m : 15s for
SimplE and 1d : 22h : 19m : 22s for Rotate in 200 dimensions.
The parameter settings of the original embedding models are
listed as follows: {α = 0.5, d = 200, m = 512, e = 1000} for TransE;
{α = 0.5, d = 200, m = 1024, e = 700} for DistMult; {α = 0.5, d =
200, m = 1024, e = 500} for ComplEx; {α = 0.5, d = 200, m =
1024, e = 1000} for KBGAN; {α = 0.5, d = 200, m = 512, e = 500}
for SimplE; {α = 0.5, d = 200, m = 1024, e = 1000} for RotatE.
In the actual experiment, we did not conduct a grid search

for the inverse temperature value. Instead, we directly called
the function gumbel_softmax in Pytorch (https://pytorch.org/
docs/stable/nn.functional.html?highlight=gumbel_softmax&#
x2216;#torch.nn.functional.gumbel_softmax), which can well
ensure the output of the encoder to be one-hot encoded when its
parameter hard is set to True. In addition, the clipping parameter
c is a constant, which is equal to 0.99. Note that we used
the original author’s code of KBGAN (https://github.com/cai-
lw/KBGAN) to construct experiments for KBGAN. Finally, the
ratio of positive and negative samples in the training process
is 1: 1.

B Graphical representation of model perfor-
mance

A visual representation of the results is shown in Figure B5.

Fig. B5. A visual representation of the results. The first two lines represent the results for link prediction task on Deepddi and Decagon dataset respectively; The last

two lines represent the results for triplets classification task on Deepddi and Decagon dataset respectively. The ordering of all algorithms in the figure is consistent

with that in Table 2 and 3.
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