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Abstract
Motivation: Technological advancements in high-throughput DNA sequencing have led to an
exponential growth of sequencing data being produced and stored as a byproduct of biomedical
research. Despite its public availability, a majority of this data remains hard to query to the research
community due to a lack of efficient data representation and indexing solutions. One of the available
techniques to represent read data is a condensed form as an assembly graph. Such a representation
contains all sequence information but does not store contextual information and metadata.
Results: We present two new approaches for a compressed representation of a graph coloring: a
lossless compression scheme based on a novel application of wavelet tries as well as a highly accurate
lossy compression based on a set of Bloom filters. Both strategies retain a coloring with dynamically
changing graph topology. We present construction and merge procedures for both methods and evaluate
their performance on a wide range of different datasets. By dropping the requirement of a fully lossless
compression and using the topological information of the underlying graph, we can reduce memory
requirements by up to three orders of magnitude. Representing individual colors as independently
stored modules, our approaches are fully dynamic and can be efficiently parallelized. These properties
allow for an easy upscaling to the problem sizes common to the biomedical domain.
Availability: We provide prototype implementations in C++, summaries of our experiments as well
as links to all datasets publicly at https://github.com/ratschlab/graph_annotation.
Contact:
andre.kahles@inf.ethz.ch, carsten@brown.edu, Gunnar.Ratsch@ratschlab.org

1 Introduction
The revolution of high-throughput DNA sequencing has
created an unprecedented need for efficient representations
of large amounts of biological sequences. In the next five
years alone, the global sequencing capacity is estimated
to exceed one exabyte (Stephens et al., 2016). While a
large fraction of this capacity will be used for clinical
and human genome sequencing, such as the 1000 Genomes
Project (Auton et al., 2015) or the UK10K (Walter
et al., 2015) effort, that are well suited for reference-
based compression methods, the remaining amount is still
dauntingly large. This remainder does not only include
sequences of model and non-model organisms (Zhang et al.,
2015) but also community approaches such as whole
metagenome sequencing (WMS) (Turnbaugh et al., 2007;
Ehrlich and Consortium), 2011).

The next logical steps of data integration for genome
sequencing projects are assembly graphs that help to gather

short sequence reads into genomic contigs and eventually
draft genomes. While assembly of a single species genome is
already a challenging task (Bradnam et al., 2013), assembling
a set of genomes from one or many WMS samples is even more
difficult. Although preprocessing methods such as taxonomic
binning (Dröge and McHardy, 2012) help to reduce its
complexity, the task remains a challenge. A commonly used
strategy to generate sequence assemblies is based on de
Bruijn graphs that collapse redundant sequence information
into a node set of unique substrings of length k (k-mers)
and transform the assembly problem into the problem of
finding an Eulerian path in the graph (Pevzner et al., 2001).
Especially in a co-assembly setting, where a mixture of
multiple source sequence sets is combined and information
in addition to the sequences needs to be stored, colored de
Bruijn graphs form a suitable data structure, as they allow
association of multiple colors with each node or edge (Iqbal
et al., 2012). A second use case is the application of such
graphs for the efficient representation and indexing of multiple
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genomes, forming a so-called pan-genome store (Myers et al.,
2017).

Owing to the large size, and, subsequently, the
excessive memory footprints of such graphs, recent work
has suggested compressed representations for de Bruijn
graphs based on approximate membership query (AMQ)
data structures (Chikhi and Rizk, 2013; Benoit et al.,
2015) or generalizations of the Burrows-Wheeler transform to
graphs (Bowe et al., 2012). The recent work on compressed
colored de Bruijn graphs has followed this trend. Currently,
there exist two distinct paradigms. The first is to compress the
complete colored graph in a single data structure while the
second proposes two separate (compressed) representations
of graph and coloring. Approaches that fall in the first
group include Bloom Filter Tries (Holley et al., 2016) for
pan-genome representation, deBGR (Pandey et al., 2017a)
that encodes a weighted de Bruijn graph, or Split Sequence
Bloom Trees (Solomon and Kingsford, 2017) that index
short read datasets based on a hierarchically structured set
of Bloom filters. A very recent addition to this group is
Mantis (Pandey et al., 2017b), that re-purposes the count
information in a counting AMQ data structure to represent
a set of colors. The second group contains approaches such
as VARI (Muggli et al., 2017), that uses succinct Raman-
Raman-Rao or Elias-Fano compression on the annotation
vector, and Rainbowfish (Almodaresi et al., 2017), that
additionally takes into account the distribution of the
annotations in the graph to achieve better compression rates.

Our contribution falls into the second group and allows for
efficient addition and removal as well as editing of individual
annotation tracks on an existing graph structure. We present
a succinct annotation data structure based on wavelet tries
that takes advantage of correlations between columns of the
annotation matrix and shows excellent compression rates
on a wide range of input data. Moreover, the proposed
data structures can efficiently handle dynamic settings where
annotation or underlying graph structure are subject to
change. For genomics applications, such as encoding of a
pan-genome index for read labeling, where a fully exact
reconstruction of the annotation is not necessary but an
approximate recovery with high accuracy would be sufficient,
we also present a probabilistic compression scheme for an
arbitrary number of colors. Based on Bloom filters (Bloom,
1970), a data structure for efficient AMQ with a one-sided
error, we encode colors as bit vectors and store them in a set of
filters. We further reduce the necessary storage requirements
of the individual filters by maintaining weak requirements
on their respective false-positive rates, which is subsequently
corrected for by using neighborhood information in the graph.

After providing a short introduction to our setup and
notation in Section 2.1, we give a summary of the graph
structure used in our experiments in Section 2.2. We then
introduce a lossless color compression scheme based on
wavelet tries in Section 2.3.1 and provide a description
of a probabilistic encoding that drastically improves the
compression rate at a moderate loss of accuracy in

Section 2.3.2. Next, in Section 3 we evaluate our proposed
strategies in the context of commonly used color encodings on
a wide range of different datasets. Finally, we use Section 4 to
discuss limitations and give an outlook on future directions.

2 Approach
The proposed techniques for color compression take
advantage of the underlying sequence graph. Although we
impose no restrictions on graph topology, we assume that all
nodes in a linear path (a directed path in which all nodes
have in-degree and out-degree 1) share an identical coloring
(a set of colors). In this work, we will focus on compressing
colorings of de Bruijn graphs constructed on pangenomic and
metagenomic datasets.

We implement our reference metagenome as a colored de
Bruijn graph (cDBG), which consists of a de Bruijn graph
constructed from a collection of input sequences (forward and
reverse complement) and an annotation associated with the k-
mers generated from these input sequences. We represent this
annotation as a binary matrix, where each row corresponds
to an edge and each column corresponds to a predefined
annotation class. Set bits in this matrix indicate associations
of edges with annotation classes.

2.1 Preliminaries and notation
Let Σ be an alphabet of fixed size (in the case of genome
graphs, Σ = {$, A, C,G, T,N}, where $ represents the string
terminus). Given a string s ∈ Σ∗, we use s[i : j] to denote the
substring of s from index i up to and including index j, with
i, j ≥ 1.

Given a bit vector b ∈ {0, 1}m of length m, we use the
notation |b| to refer to its length, b[i] to refer to its ith

character, 1 ≤ i ≤ |b|, b[j : k] to refer to the bit vector
b[j] · · · b[k], b[: k] to refer to its prefix b[1 : k], and b[j :] to
refer to its suffix b[j] · · · b[|b|]. The empty vector is denoted ε.
Finally, given bit vectors a, b ∈ {0, 1}m, we use the notation
a∨ b and a∧ b to denote the bitwise OR and AND operators,
respectively.

The function rank0(b, j) counts the occurrences of the
character 0 in the prefix b[: j], while select0(b, j) returns
the index of the jth 0 in b. The functions rank1 and select1
are defined analogously for the 1 character. We will use the
notation 2A to denote the power set of a set A and abuse the
notation | · | to also denote set cardinalities.

2.2 Graph representation
Given an ordering of the edges E = (e1, . . . , en) of an
underlying graph G = (V,E) and a set of colors 1, . . . ,m,
we define the annotation matrix A ∈ {0, 1}n×m such that

Aij = 1{ei has color j} =

{
1, ei has color j,
0, otherwise.

(1)

As a proof of concept for the graph coloring presented
in this work, and without loss of generality, we use a simple
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representation of a de Bruijn graph with its edges (the k-mers)
stored in a hash table.

During construction of the graph, colors are computed for
each edge based on the metadata of the input sequences.
We assign each unique metadata string to an annotation
category with a corresponding positive integer index (color).
During k-mer enumeration, each k-mer is assigned to a set
of colors encoding its respective metadata categories. We
then represent this coloring through a binary vector (bit
vector) with bits set for the corresponding edge colors. When
duplicate k-mers are collected to construct graph edges, we
combine the k-mers’ respective bit vectors via bit-wise OR

operations and assign the aggregated coloring to the resulting
edge. Alongside the de Bruijn graph, this process results in
the encoding of a graph coloring as an annotation matrix
A with n rows corresponding to the edges of the graph and
m columns corresponding to the total number of annotation
classes observed during construction. The resulting graph-
annotation pair (G,A) is a colored de Bruijn graph. When the
graph is queried, patterns are mapped to a path (a sequence
of edges) and, hence, a corresponding sequence of annotation
matrix rows.

2.3 Graph topology-aided color compression
2.3.1 Loss-less row compression with wavelet tries
For lossless compression of annotation matrices, we propose a
novel application of the wavelet trie data structure (Grossi
and Ottaviano, 2012). Wavelet tries compress tuples of
dynamic bit vectors by finding common segments (contiguous
subsequences) among the encodings of its characters. Briefly,
a wavelet trie builds on the concept of a wavelet tree and
takes the shape of a compact prefix tree (a binary radix trie,
cf. Figure 1 and Suppl. Figure S-1).

In the context of genome graph coloring, we employ
wavelet tries to compress the rows of the annotation matrix
to allow for dynamic updates in its rows and columns.
We employ a construction strategy based on wavelet trie
merging (Grossi and Ottaviano, 2012; Böttcher et al., 2017),
but in a parallel fashion. Since wavelet tries were originally
conceived to compress binary encodings of strings (where the
null terminal character has an encoding), the assumption that
the end of a sequence is marked by a specific subsequence no
longer holds in our application. Thus, our construction and
merging algorithms are adapted to take this fact into account.

Construction The wavelet trie encoding the annotation
matrix A ∈ {0, 1}n×m is constructed recursively and is a
binary tree (Figure 1) with nodes VT of the form

(αj , βj) ∈ VT , αj , βj ∈ {0, 1}∗.

The αj are referred to as the longest common prefices (LCPs)
and the βj are referred to as the assignment vectors.

We define the initial tuple of input bit vectors to be the
rows of A, B = (A1, . . . ,An), where Ai = (Ai1, . . . ,Aim) ∈
{0, 1}m, 1 ≤ i ≤ n. The algorithm starts by constructing
the root node (α1, β1) from the initial set of input vectors
B1 = B.

On the jth iteration, for a list of input bit vectors

Bj = (b1j , . . . , b
`j
j ), bij ∈ {0, 1}kj , 1 ≤ i ≤ `j ,

we compute (αj , βj) as follows. First, we compute the longest
common prefix αj := LCP(Bj) for the bit vectors in Bj .
Formally, this function is defined as follows,

LCP(Bj) = argmax{
α∈{0,1}∗

∣∣ bij [:|α|]=α ∀i=1,...,`j

} |α|.

If the computed αj matches all the input bit vectors, let the
assignment vector consist of |Bj | zeros, βj := (0, . . . , 0) and
(αj , βj) is referred to as a leaf, which terminates the recursion
branch. Otherwise, the assignment vector is set to be the
concatenation of next bits in each of the bij , 1 ≤ i ≤ `j after
removing the common prefix αj ,

βj := (b1j [|αj |+ 1], . . . , b
`j
j [|αj |+ 1]).

We continue the recursion on the child nodes (α2j , β2j) and
(α2j+1, β2j+1), with the new tuples of bit vectors B2j and
B2j+1, respectively, which are defined by partitioning Bj
based on the assignments βj and removing the first |αj | + 1

bits,

B2j := (b
select0(βj ,1)

j [|αj |+ 2 :], . . . ,

b
select0(βj ,rank0(βj ,|βj |))
j [|αj |+ 2 :]);

B2j+1 := (b
select1(βj ,1)

j [|αj |+ 2 :], . . . ,

b
select1(βj ,rank1(βj ,|βj |))
j [|αj |+ 2 :]).

Parallel construction via trie merging To allow for
parallel construction, we develop an algorithm to merge
wavelet tries constructed on batches of edge colorings that
generalizes the methods presented by Grossi and Ottaviano
(2012) and Böttcher et al. (2017). Merging proceeds by
performing an align and a merge step on each node, starting
from the root (Suppl. Figure S-2). Given two wavelet tries
T ′ and T ′′ with node sets V ′T = {(α′j , β′j)}n

′
j=1 and V ′′T =

{(α′′j , β′′j )}n′′j=1 that we want to merge into a new trie T , the
merging process can be summarized in three steps:

1. Align: For the nodes (α′j , β
′
j) and (α′′j , β

′′
j ), compute the

longest common prefix LCP(α′j , α
′′
j ), create new nodes

with this value and appropriate β vectors, and set this to
be the parent of the current nodes.

2. Merge: Once α′j and α′′j are equal, concatenate β′j and
β′′j .

3. Repeat: Move down to j’s children and apply the same
function until all leaves are reached.

Time complexity Let A ∈ {0, 1}n×m be the annotation
matrix. The height of a constructed wavelet trie with nodes
VT depends on the degree to which the input bit vectors share
common prefices. Since there can be at most n leaves, and the
maximum height of the trie is at most m, the number of nodes
can be at most |VT | ≤ min(2n− 1, 2m − 1).
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Fig. 1: A wavelet trie constructed for a tuple of bit vectors
At a node, the common prefix of the bit vectors is extracted and
the next significant bit is used to assign the bit vector suffices to
that node’s children. A node becomes a leaf when all bit vectors
assigned to it are equal. Index queries are resolved by traversing
the tree and performing rank operations on the assignment bit
vectors.

Given two wavelet tries with sets of nodes V ′T and
V ′′T , merging is performed in O(|V ′T | + |V ′′T | + |β′1| + β′′1 |)
time (Grossi and Ottaviano, 2012). Once a wavelet trie is
constructed, queries can be performed in O(h) time, where
h ≤ m is the height of the trie. To achieve this value, the
βj are compressed with RRR coding (Raman et al., 2007) to
support rank operations in O(1) time.

Using prior knowledge to improve compression One
of the most important factors determining compression ratio
(see Section 2.4 for a formal definition) of a wavelet trie
is the distribution of longest common prefices encountered
during construction. We explore whether prior knowledge can
be used to form groups of similarly colored edges and help
optimize compression ratios.

Given a similarity metric defined on edge colorings,
paths can be grouped into classes defined by high similarity
between their constituent edge colorings. Then, then class
membership can be used to group edges for improved
compression. Example class definitions can be based on
phylogenetic information (e.g., shared taxonomic IDs) or
sequence alignment information (e.g., alignment to a given
reference genome).

To encode the assignment of edges to classes, we introduce
additional colors and add corresponding new columns (called
class indicator bits) to the annotation matrix. Additionally,
we hypothesize that if the indicator columns are of low
index, then edges from the same class are more likely to
be co-assigned to matching nodes in a wavelet trie. This
would facilitate a partitioning of the rows that has the
potential to significantly improve the compression ratio of the
wavelet trie. We implement this procedure by providing class
information as additional metadata strings, which are then
used to augment the coloring of each edge with the color of
its corresponding class.

2.3.2 Probabilistic column compression with Bloom
filters

For cases where a lossy compression scheme with moderate
loss of accuracy will suffice in place of fully lossless
compression, we explore a probabilistic compression of the
annotation matrix as a near-exact compromise. Since, by
definition, the columns of the annotation matrix encode set
membership, it is possible to compress them using Bloom
filters (Bloom, 1970), a probabilistic data structure for
approximate set membership queries.

A Bloom filter is a tuple BF = (B,H), where B ∈ {0, 1}b

is a bit vector and H = {h1, . . . , hd} is a collection of d hash
functions mapping each input to an element of {1, . . . , b}. For
simplicity of notation, let ei ∈ {0, 1}b denote a bit vector in
which only the ith bit is set to one.

Two of the operations supported on this structure are
insert and the relation of approximate membership ∈,

insert((B,H), x) =
(
B ∨ eh1(x) ∨ · · · ∨ ehd(x)

,H
)
,

x ∈ BF ⇔ insert(BF , x) = BF .

Bloom filter reparametrization Although the Bloom
filter has no false negative errors, the false positive
probability (FPP) of the approximate membership query on
a Bloom filter with s inserted elements can be approximated
(Mitzenmacher, 2001) as

FPP(b, d, s) =

(
1−

(
1−

1

b

)ds)d
≈
(

1− e−
ds
b

)d
. (2)

As a corollary, an alternate parametrization of Bloom filters
can be derived. Given a target false positive probability
p and s elements to insert, optimal values for d and b

(Mitzenmacher, 2001) are

d = d− log2 pe, (3)

b = −s
log2 p

ln 2
. (4)

Given an encoding of an annotation matrixA ∈ {0, 1}n×m

as a collection of Bloom filters BF1, . . . ,BFm, the raw
annotation of an edge ei ∈ E being queried is as follows:

query(ei) = (1{ei∈BF1}, . . . , 1{ei∈BFm}). (5)

Neighborhood-based Bloom filter correction Following
the same rationale as for the wavelet tries, and building on the
assumption that edges neighboring in the graph often share a
large part of their annotation, we can also drastically improve
the compression power of the Bloom filters.

More precisely, given a linear path, we compute the
intersection of the colorings of ` edges in some neighborhood
within the path and obtain an annotation with drastically
reduced FPP. If we let N (e) ⊂ E denote the neighborhood
of an edge e ∈ E within a linear path in which all nodes are
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assumed to share the same annotation, we can then define the
corrected annotation as

annotation(e) = query(e) ∧
∧

e′∈N (e)

query(e′). (6)

Following the argument in (Mitzenmacher, 2001) (see
Formula 2), the FPP for one annotation color of a segment of
length ` can be approximated as

FPP(b, d, s)` ≈
(

1− e−
ds
b

)d`
, (7)

since ` false positive errors have to be made to lead the Bloom
filter to a false positive error.

This correction method relies on direct access to the
underlying graph structure to reference during decoding, in
contrast to the wavelet trie approach in which this is not
required.

2.4 Data
We use several standard datasets to evaluate the performance
of our compression schemes. They originate either
from viruses (Virus100, Virus1000, and Virus50000),
bacteria (Lactobacillus) or humans (chr22+gnomAD and
hg19+gnomAD) and are chosen to test the methods on
different coloring distributions, sizes and densities. They
further reflect varying graph topologies and allow us to
study the effect of topology-informed compression in a robust
testbed. We construct de Bruijn graphs of order k = 63 for
each dataset. We compare the compression performance of the
methods by measuring the compression ratio for each dataset
across methods, defined as the ratio of the number of bits in
an annotation matrix and the number of bits in its respective
compressed representation. Please refer to Suppl. Section B
for a more detailed description of the datasets.

The virus and bacteria datasets are both generated from
publicly available GenBank (Clark et al., 2016) complete
genome data. The Virus1000 dataset consists of 1000
randomly selected complete virus genomes, whose resulting
graph consists of several disjoint, linear paths. The Virus100
dataset is a subset of this consisting of the first 100 genomes
in Virus1000. The Virus50000 dataset consists of the set of
53,412 virus strains present in GenBank on September 30th,
2016, with a greater average similarity between sequences.
On these datasets, the colors are defined to be indicators for
each genome ID, while the class indicator bits are defined
by each genome’s taxonomic genera. The rows of these
annotation matrices are very sparse and present degenerate
cases with respect to compressability by wavelet tries. As
intermediate data points, Virus3000 and Virus20000 datasets
were constructed as supersets of Virus1000 (see Suppl. Section
B.3 for more details). For brevity, numerical data from these
sets is included only in the Supplementary Materials.

The Lactobacillus dataset consists of 135 different
bacterial strains from the genus Lactobacillus, respectively,
which leads to a linear topology in the graphs with many
shorter paths (bubbles) diverging from and reconnecting to
the main reference genome paths. The colors are defined to

be indicators for genome IDs, while the class indicator bits
are defined by each genome’s species.

For the human datasets, the hg19 assembly of the
human reference genome is used as the main reference
backbone, together with exome variants from the gnomAD
dataset (Consortium et al., 2016). The chr22+gnomAD
dataset is chromosome 22 from this data, resulting in a graph
that has a similar structure as the Virus1000 graph, scaling
the number of nodes three-fold and reducing the total number
of colors. The hg19+gnomAD dataset consists of the human
autosomal portion of this data, with a similar topology. On
these datasets, the colors are defined to be indicators for
the reference chromosomes and the ethnic groups present
in the gnomAD data. The colors corresponding to reference
chromosomes are designated as the class indicators without
adding additional columns (i.e., the sequence variant edges
are additionally colored by their corresponding reference
chromosome colors).

Table 1 summarizes these collections in terms of their
number of nodes and edges for the constructed de Bruijn
graphs, as well as their respective numbers of colors and
unique colorings derived from the corresponding metadata.

3 Evaluation and Applications
In this section, we explore our hypothesis that graph topology
can aid in improving compression ratios and study the space
complexities of our compression techniques on a variety
of viral datasets increasing in size. Finally, we compare
the compression ratios of our methods to those of general
compression algorithms and those of methods developed
specifically for de Bruijn graph color compression.

Experiments were performed on a single thread for
Bloom filter compression and ten threads for wavelet trie
compression, on the Intel(R) Xeon(R) CPU E5-2697 v4
(2.30GHz) cores of ETH’s shared high-performance compute
systems. Run times and peak RAM consumption are reported
in Suppl. Table S-7a.

3.1 Graph topology affects compression ratios
For both the wavelet trie and Bloom filter compression
schemes, we explored methods for encoding graph topology
with the goal of improving compression ratios. To this end,
we explore the introduction of additional class indicator
colors/bits for wavelet tries and graph neighborhood-based
annotation correction for Bloom filters.

3.1.1 Class indicator bits significantly improve
compression ratio

We test the hypothesis that optimal compression can
be achieved by setting class indicator bits in low-index
positions in annotation matrices1 via an exact test by
permuting the annotation matrix column order on the
Virus100 and Lactobacillus datasets. More precisely, we

1 H0: column ordering does not influence compression ratios
when class indicator bits are set
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Data set Nodes Edges n Colors m Annotations Density (%) s
nm

Virus100 2,954,719 2,956,113 100 463 1.056
Virus1000 30,310,634 30,347,373 1,000 11,612 0.117
Virus50000 622,587,315 625,110,390 53,412 1,359,843 0.006
Lactobacillus 134,951,429 135,369,397 135 6,630 1.475
chr22+gnomAD 178,196,890 180,023,641 9 510 2.147
hg19+gnomAD 5,714,136,751 5,728,489,633 30 380,051 1.762

Table 1. Datasets used for evaluation Columns represent number of nodes and edges per dataset, total number of colors and annotations (number
of unique edge colorings, or color combinations), and density of the annotation matrices, where the quantity s refers to the number of set bits in the annotation
matrices.
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(b) Improvement in Bloom filter compression ratios after
neighborhood correction

Fig. 2: Graph topology improves compression ratios (a) Distribution of the file sizes of wavelet tries over 100 random permutations
of the annotation matrix column order. The original ordering of the columns leads to an optimal file size when class indicator bits are
set, as indicated in the CDF by the red dot. (b) Bloom filter decompression accuracy (fraction of correct edge colors) as a function of
filter size (bits per edge). Parameters required to achieve 99% accuracy on the uncorrected Bloom filters were not computed.

generate 100 samples by randomly permuting the columns
in the annotation matrix and compress the resulting data
to approximate the null distribution of compression file sizes
across permutations of the matrix column order (see Figure 2a
and Suppl. Figure S-3).

First, when we test the hypothesis without setting class
indicator bits, the compressed file size corresponding to the
column ordering induced by the graph construction algorithm
is found to not be optimal with respect to its approximated
null distribution (see Suppl. Figure S-3). However, when
class indicator bits are set in low index positions, the
original ordering of columns is optimal with respect to its
approximated null distribution, resulting in an empirical
p-value of p < 0.01 (see Figure 2a).

3.1.2 Neighborhood correction improves Bloom filter
compression ratio 30- to 70-fold

We study the effects of neighborhood-based Bloom filter
correction on all datasets by varying the average number
of bits per edge of the Bloom filters and measuring the
accuracy of color reconstruction (see Methods, Section 2.3.2).
The results show 70-fold decreases in the number of bits
required per edge to achieve similar decompression accuracies

on almost all datasets (see Figure 2). A notable exception
is the chr22 dataset, where only a 30-fold improvement is
observed.

The average number of graph traversal steps needed to
correct the Bloom filters to an accuracy of 95% ranges from
99.1 to 207.3 (see Suppl. Table S-1). To correct the Bloom
filters to an accuracy of 99%, the average number of traversal
steps required ranges from 82.3 to 156.3.

3.2 Compression power grows with the number of colors
To test the scalability of the compression methods, we
generate a chain (a linear hierarchy) of virus graphs ranging
from 100 to 1000 randomly selectely selectedd genomes in
steps of 100 (i.e., G1 ⊂ · · · ⊂ G10) and measure the
compression ratios of the annotations for each graph. On our
datasets, the wavelet trie method with class indicator bits
set and the Bloom filter method with FPP < 0.05 display
linear growth in the compression ratio as number of genomes
increases to 1000 genomes (see Suppl. Figure S-4), with
sublinear growth for more genomes (see Figure 3). Sublinear
growth is observed in the wavelet trie method without class
indicator bits and, to a lesser extent, the Bloom filter method
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Fig. 3: Growth of compression ratios Compression ratios
on virus graphs of increasing genome count. Error bars were
computed from the virus graph chains resulting from six random
draws of the Virus1000 dataset (see Section 3.2.

with FPP < 0.01 (see Figure 3 and Suppl. Figure S-4). A two-
fold decrease in compression ratio is observed when the false
positive probability criterion for the Bloom filters is decreased
from 0.05 to 0.01.

3.3 Wavelet tries and Bloom filters improve on
state-of-the-art compression ratios

Finally, we close with a side-by-side comparison of the various
de Bruijn graph color compression schemes presented in
Section 1. In addition to these domain-specific methods,
we include two popular general-purpose static compression
methods, gzip and bzip2. gzip is an implementation of the
LZ77 algorithm that encodes blocks of text, while bzip2
performs a sequence of transformations, including run-length
encoding, BWT, move-to-front transforms, and Huffman
coding.

Table 2 lists the number of bits required per edge to
compress our experimental collections.

3.3.1 Wavelet trie compression ratios match state-of-
the-art

Our results show that wavelet trie compression outperforms
gzip and the VARI method on most datasets, while
performing marginally better than Rainbowfish and marginally
worse than bzip2 (see Table 2). The Virus100, Virus1000,
Virus50000, and Lactobacillus datasets are compressed to
5.8, 23.8, 698.4, and 7.3 bits per edge, respectively. The
Virus1000 and Virus50000 datasets are notable in that
wavelet tries without indicator bits set exhibit the worst
compression performance among the tested methods. Setting
class indicator bits leads to a two-fold improvement in the
compression performance on the Virus1000 dataset (from
23.8 bits per edge to 10.5), ten-fold improvement on the
Virus50000 dataset (from 698.4 to 73.7 bits per edge), and
marginal improvements in performance on the other datasets
(4.9 and 5.6 bits per edge on the Virus100 and Lactobacillus
datasets, respectively). In this setting, the chr22+gnomAD

and hg19+gnomAD datasets are compressed to 2.4 and 5.5
bits per edge.

3.3.2 Bloom filters improve on state-of-the-art by an
order of magnitude

At an accuracy of 95%, our method is considerably more
space efficient, achieving compression ratios over an order of
magnitude greater than bzip2 and Rainbowfish. An average
of 0.35 and 0.49 bits per edge are required to compress the
Virus100 and Virus1000 datasets, respectively, compared to
5.8 and 9.7 bits for Rainbowfish and 4.8 and 7.5 bits for bzip2.
An average of 2.4 bits per edge are required to compress the
Virus50000 data set, compared to 37.7 bits for bzip2. We
were unable to compress this dataset using the Rainbowfish
method due to its RAM consumption exceeding the per-
job limit on our computing system. On the Lactobacillus
dataset, an average of 1 bit per edge are required, compared
to 7.8 bits for Rainbowfish and 5.7 bits for bzip2. On the
chr22+gnomAD and hg19+gnomAD datasets, 0.45 and 0.68
bits are required per edge, compared to 2.7 and 5.4 bits for
bzip2, and 3.3 and 5.6 bits for Rainbowfish.

At 99% accuracy, an increasing number of bits are required
per edge with increased virus dataset size (see Table 2).
Fold-increases in the number of bits per edge from 1.3 bits
(Virus100) to 5.4 bits (chr22+gnomAD) are required.

4 Discussion
In this study, we have addressed the problem of encoding
metadata as edge colors of a given graph and demonstrated
its application to de Bruijn graphs by presenting two distinct
compression schemes. First, we have developed a novel
application and extended parallel construction method of the
wavelet trie data structure on general sequences of bit vectors
that employs an iterative merging scheme to build larger tries
from many smaller instances. Further, we have presented a
probabilistic, compressed representation using approximate
set representations that can store an arbitrary amount of
annotations on the graph and allows for greater compression
ratios by taking advantage of information shared between
neighboring nodes to correct errors.

We have shown that utilizing the topology of the
underlying graph helps in achieving improved compression
rates. For the wavelet tries, we used indicators for the
backbone regions of the de Bruijn graph positioned in low-
index columns of the annotation matrix and for the Bloom
filter approach, we used neighboring linear regions in the
graph for error correction.

Either representation can be efficiently decompressed and
queried to retrieve the coloring of arbitrary paths in the graph.
Although it is helpful to know the frequency of individual
colors upfront to design an optimal order of columns for the
wavelet trie compression or to optimally choose the size of the
individual Bloom filters used, these parameters can be easily
estimated from a subsample of the input data, allowing to
directly build the full coloring.
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Proposed
Data set Colors

m

gzip bzip2 VARI RBF WTr WTr
(CI)

BF 95% BF
99.0%

Virus100 100 11.4 4.8 9.8 5.8 5.7 4.9 0.36 0.44
Virus1000 1,000 26.5 7.5 14.7 9.7 23.8 10.5 0.49 0.82
Virus50000 53,412 135.3 37.7 56.0* ‡* 698.4 73.7 2.58 7.41
Lactobacillus 135 15.6 5.7 19.3 7.8 7.3 5.6 0.95 1.40
chr22+gnomAD† 9 4.6 2.7 17.3* 3.3* N/A 2.4 0.45 2.41
hg19+gnomAD† 30 10.9 5.4 14.5* 5.6* N/A 5.4 0.68 1.82

Table 2. Compression performance of wavelet trie and Bloom filter schemes (measured as number of bits per edge). Each
dataset is encoded with eight different compression schemes, including general compression algorithms such as gzip and bzip2, existing methods specific to
colored de Bruijn graphs such as VARI (Muggli et al., 2017) and Rainbowfish (RBF, Almodaresi et al. (2017)), as well as the wavelet trie encoding
with (WTr (CI)) and without (WTr) the class indicator bits set, and the Bloom filter compression at > 95% (BF 95%) and > 99% (BF 99%) accuracy.
All compression rates are measured as average number of bits per edge. VARI numbers correspond to compilation with 1024 bit support. *: On these datasets,
VARI and RBF results are generated by exporting the annotation data in compatible formats. †: class indicator bits set in all figures. ‡: Consumed more than
400GB memory limit.

We have shown the utility of our approaches on different
biological datasets, including data from virus, bacteria
and human genomes, representing different classes of graph
topologies and colorings. On all datasets we achieve
comparable or strongly increased compression performance
at very high levels of decompression accuracy. Notably, our
approach is dynamic and allows for an easy extension with
additional labels/colors or for changes in the underlying graph
structures, enabling the augmentation of large colored graphs
with new annotations — a scenario commonly occurring in
the genomics setting. Additionally, the wavelet trie model is
fully dynamic, allowing for label and edge removal.

A possible limitation of the wavelet trie method is
its reliance on shared segments (contiguous subsequences),
especially in the first few columns of the annotation matrix,
to effectively partition the rows for optimal compression.
The results on the viral datasets confirm that, given an
annotation matrix with very sparse and mutually-exclusive
rows, wavelet tries underperform relative to other methods
due to tree imbalance. While this is partially addressed by
setting class indicator bits in the annotation matrix, a more
principled approach with less user input will become necessary
in future work and could involve an analysis of the de
Bruijn graph topology to algorithmically determine optimal
backbone paths. Further improvements in compression ratio
could be gained by an optimal ordering of the rows of the
annotation matrix, but at the additional cost of maintaining
a map from graph coordinates to their respective annotation
matrix rows.

One of the limitations of our Bloom filter correction
method is its reliance on the presence of long, identically-
colored paths for correction. While this assumption worked
well for the Virus100 and Virus1000 datasets, the shorter
linear paths in the larger sets reduced our ability to correct
errors in this fashion. Despite its higher compression ratio,
one restriction of the Bloom filter-based method is that
its corresponding graph must be accessible for reference.
Although this is already done in our application, it couples
annotation query times to graph query times. To decouple

the graph from the filters, an additional structure could be
constructed to indicate edges in the graph at which changes
in coloring occur. Such a structure would then allow for the
assumption that colors remain constant in linear regions to
be relaxed.

Future work on probabilistic compression will focus on
improving scaling properties. In a dynamic setting, if a
dataset grows rapidly in the number of edges, the decoding
accuracy will eventually drop, ultimately requiring a re-
initialization into a larger Bloom filter. Further, despite being
dynamic, the current probabilistic representation does not
allow for the removal edges from the graph. To support this,
we could replace the Bloom filters with other probabilistic
set representations that allow for item removal (Bender
et al., 2012; Fan et al., 2014). Lastly, an additional space
improvement could be achieved with more space efficient
probabilistic set representations such as compressed Bloom
filters (Mitzenmacher, 2001).
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