
occupational specialist [such as an aviation medical examiner (AME)]
and cardiologist.

Return to occupational duties may be considered based on a
detailed risk assessment. Secondary prevention must remain optimal
for all high-hazard employees.2–5,13–16

Conclusions

Cardiovascular disease is highly relevant in a population working in
high-hazard occupational environments, whether civilian or military
(such as aircrew, seafarers, submariners, special forces, bus drivers, or
firefighters). The necessity for cardiac surgery will likely have a signifi-
cant impact on both the lives and careers of these individuals.
Therefore, it is critical that their assessments both pre- and post-sur-
gery are detailed and specific as to ensure the best surgical outcome
but also the minimal impact on their livelihoods.

Individuals who work in a high-hazard occupational environment
may have pathology identified earlier than the so-called ‘normal’ popu-
lation due to occupational cardiovascular screening. Furthermore,
they often require careful long-term follow-up to ensure that they can
continue to perform safely and that it is appropriate for them to do so,
with a specific focus on the risks of distraction (that may result in loss
of attention at a critical phase of work) or sudden incapacitation.

Whilst individuals should be treated using international guidelines, if
more than one equivalent treatment approach exists, cardiac surgeons
should consider which alternative is more appropriate given the occu-
pational role undertaken; liaison with the specialist medical examiner
(e.g. Occupational Health consultant or AME for aircrew) is strongly
recommended prior to surgery to fully understand the extent of the
impact of the cardiac surgery being considered on their future
employment.

Many patients will be able to resume their activity post-operatively,
albeit often with restrictions on their occupational duties. The post-
operative follow-up of those at the highest occupational risk, such as
aircrew, needs tight scheduling and requires seamless collaboration
with the cardiologist and the occupational specialist (i.e. AME for
aircrew).

Improving dialogue between the surgical and cardiological societies
and the occupational and licensing authorities is self-evident to ensure
support and collective agreement for future updates of the occupa-
tional health regulations and the clinical cardiac surgery guidelines.17

Conflict of interest: none declared.

References
References are available as supplementary material at European Heart
Journal online.

doi:10.1093/eurheartj/ehz701

Artificial intelligence-assisted care in medicine:

a revolution or yet another blunt weapon?

Potentials, challenges, and the future of implementing artificial intelligence
(AI) for clinical care

Today, artificial intelligence is a
sophisticated pattern recognition
device

In the history of cardiovascular medicine, technical innovation has
always been an essential driver for medical breakthroughs. An incom-
plete list could contain examples like Laennec’s stethoscope, the elec-
tro- and echocardiogram, percutaneous coronary interventions, and

continue to transcatheter structural heart interventions to open heart
surgery, ventricular assist, and implantable electronic devices.

Nevertheless, we have also seen many examples of cutting edge
technologies associated with big promises and bold expectations, that
have not really translated to routine clinical care yet (e.g. cardiac cell
therapy1). Recently, one can hardly overlook the work and exclama-
tions regarding AI in medicine.

Artificial intelligence is neither a specific technology nor has it any
‘artificial’ features. More correctly referred to as machine intelligence
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(MI), it describes a roughly 60-year-old research field of algorithmically
solving problems that conventionally require human intelligence.2 The
MI field has seen times when expectations were disappointed when
the field was even announced to be dead—such episodes emerged
multiple times in the history of MI and some periods were even called
the winters of MI, accompanied by periods of dramatically reduced
interest and funding. Multiple factors caused them, but the most
important cause was over-inflated expectations that were doomed to
be disappointed.

We are currently witnessing the third advent of MI, mainly driven by
the application of deep neural nets to large amounts of data. Just
recently, remarkable advances were achieved in image and language
processing, reaching human parity in specific applications, such as
image classification3 or machine translation.4,5 However, one has to
keep in mind that MI shines in specific use cases [i.e. spot cancer on the
computed tomography (CT) scan], but that is not usually what one has
in mind when thinking about general AI (i.e. ‘Hollywood’s robots’).
Most people associate the term AI with a machine’s ability to mimic
human cognitive function. A vision that factually is still far out of reach.

The most effective existing MI techniques augment and support our
own intelligence. Most recent implementations of MI are based on
deep neural network architectures,6 which are basically complex stat-
istical pattern recognition machines. Nevertheless, deep learning is a
powerful tool with great potential for use in medical practice and
research. Among the more common deep learning applications for
diagnostic support (i.e. improving the quality of specific clinical tasks),
some research has also led to new findings. For instance, Poplin et al.7

were able to infer patients’ gender as well as cardiovascular risk factors
only using fundoscopic images. Attia et al.8 used deep learning to detect
the electrocardiographic signature of atrial fibrillation present during
normal sinus rhythm using just a standard 10 s, 12-lead electrocardio-
gram. We ourselves at the German Heart Center, Berlin, developed
highly accurate deep learning-based models for detecting complica-
tions during post-cardiothoracic surgery care.9 A recent review
presents many more examples of impressive applications of deep
learning in the cardiovascular field.10

Clinical translation of research
results—the final frontier

However, despite such exciting academic deep learning achievements,
Panth et al.11 state that ‘at present, the algorithms that feature promi-
nently in the research literature are in fact not, for the most part, exe-
cutable at the frontlines of clinical practice’. Translating MI research
results into clinical care is a daunting task, for which researchers do
not get much credit. However, since mid of 2018, we are in the proc-
ess of translating our results into clinical care. We developed a proto-
type medical product and integrated it into the hospital’s medical IT
infrastructure for research use (Figure 1).

One experiences countless obstacles on the way to a certified medi-
cal product, specifically in the context of hospitals’ individual data infra-
structures and regulations. Hospitals are still undergoing a transition to
holistically digitized units; thus, access to digitized data is limited.
Furthermore, historically, clinical information systems have been
organized into multiple orthogonal data silos, making data harmoniza-
tion considerably more challenging. Also, hospitals adopt data

structures to their individual requirements, and rarely make use of
coding and terminology standards such as LOINC12 or Snomed CT.13

Adapting a hospital’s established infrastructure to these standards in
order to integrate a new device or system can be time-consuming and
costly.

Since the introduction of the new EU Medical Device Regulation
(MDR) from 2017, becoming effective in 2020, broader ranges of soft-
ware types are considered as medical products and, additionally, all
instances of software as a medical device (SaMD) received higher risk
classes, coupled with more complicated, time-consuming, and costly
requirements for certification. Such raised risk classes also apply to
clinical decision support systems, which intend to monitor physiological
processes or provide information which is used to take decisions with diagno-
sis or therapeutic purposes.14

The EU’s General Data Protection Regulation (GDPR15), effective
since 2018, has introduced additional challenges related to health data
access. While clinical research may use pseudonymized data, the
development of medical products requires the use of either fully ano-
nymised data (which is difficult, if not impossible, for datasets with a
large variety of values) or project-specific consents from the data
owner (i.e. patients).

Still, it is worth to tackle all these challenges and translate deep
learning achievements into clinical use.

Deep learning—the only kid on the
block?

There are two fundamental types of models:

(1) entirely data-driven models learned from empirical observations, and
(2) knowledge-based models which build upon prior insights.

Figure 1 Photo of the current prototype of the post-operative
bleeding prediction algorithm based on the results of Ref.9 Here, all
patients of the ward are displayed with corresponding risk values cal-
culated in real-time. The current value and the course of the past 3 h
are displayed graphically for each patient; patients at risk are
highlighted.
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Deep learning belongs to the class of non-knowledge-based
approaches and is favourable when large quantities of data are avail-
able. On the other hand, when

(1) data for learning is difficult to acquire,
(2) the system needs to follow specific rules or respect boundaries (e.g.,

guidelines and risk-benefit ratio), or
(3) clinicians need complete computational transparency and reproduci-

bility (e.g., to study a system’s behaviour),

then knowledge-based approaches are more suitable. Various
knowledge-based methodologies exist differing in the complexity of mod-
elling and computation; from simple decision trees, through rule-based
approaches (e.g. Arden Syntax16), to more complex probabilistic graphi-
cal models (e.g. Markov random fields17 and Bayesian networks18,19).

These methodologies require a predefined knowledge base, which
can be learned automatically from structured data, semi-automatic, or
completely modelled by domain experts. For instance, when only a
small amount of data is available, domain experts can support the mod-
elling by defining the usually known causal relationship between varia-
bles, and the model learns only the probabilities.

While the main effort in non-knowledge-based approaches lies
mainly in data preparation (which may decrease in the future through

appropriate data collection), modelling a knowledge base is usually
very time intensive and domain experts require a deep understanding
of the underlying methodology. Nevertheless, once a knowledge base
exists, it is usually human-readable and, therefore, allows experts to
review it and modify individual decision-making characteristics (i.e. for
updating, ‘fine-tuning’, or clinical adjustments). For instance, a probabil-
istic graphical model can express a comprehensive view of clinical
guidelines and related statistics20 and, in the next step, run inferencing
algorithms to compute model-based medical evidence.21

Building sophisticated knowledge bases is a process in which medi-
cine has gained considerable experience: developing resources such as
the ESC/EACTS joint guideline for valvular heart disease22 is a prime
example. Therefore, we suggest that creating such knowledge bases
should become a substantial part of defining clinical guidelines or even
earlier when conducting clinical trials.

Another important class of MI models using prior knowledge incor-
porate biophysical properties. For instance, computational fluid and
airways simulations23 are applied on radiological image sequences in
order to visualize and simulate dynamic processes for diagnostic as
well as potential effects of treatment options.24,25

Many opportunities for computer-support in healthcare appear,
and individual MI methodologies have unique advantages and

Figure 2 (A) An exemplary illustration of different input modalities (images, time series, and diverse structured data, such as genomic sequence
data26) and modelling methodologies, such as deep neural networks, probabilistic graphical models, computational fluid dynamics. These approaches
can be combined into ‘one model’ referring to hybrid modelling or server for inter-model validation. In contrast, (B) shows a single modelling meth-
odology, in this case, a deep neural network, with a unimodal data input.
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disadvantages; therefore, most have good chances to be further devel-
oped and clinically applied. Combined methodologies are promising to
increase the range of clinical applicability as well as increase their accu-
racy (see Figure 2A and B).

A likely future of machine
intelligence in medicine

Machine intelligence, mainly in the form of deep learning, is here to
stay! Its statistical learning nature, however, may pose problems for
medical application,27 but these can be overcome by making use of
explainable functionality on purely statistical models, and by combining
the power of knowledge-based approaches with deep learning.
Besides, MI performance on medical data will likely see a significant
increase in accuracy and robustness when using multi-modal data as
inputs.26 Figure 2A illustrates this by showing a deep neural network
with different input data modalities. Within the next decade, we will
see a fundamental shift in clinical research and practice. It is up to physi-
cians to shape this transition in order to avoid a repetition of the elec-
tronic health record introduction, which has happened mainly without
physicians’ engagement and may have resulted in a plain usability catas-
trophe for this very reason.28

Generally speaking, MI development has the potential to disrupt
healthcare systems and clinical care: computers can process large
quantities of data and structured representation of knowledge in just a
short time without loss of information. They are tireless, and without
personal interests. The digitization and desire for personalized medi-
cine are likely to establish new clinical domains focusing on
computer-assisted medicine. Indeed, machines will take over, espe-
cially for recurring and specific foreseeable tasks; however, this is a
unique opportunity to regain more time for patient communication,
sensitive matters, and complex decision-making.

Machine intelligence holds great promise to the third world by ena-
bling ubiquitous access to expert-level diagnosis. In a digitized and
machine-supported healthcare setting, it is conceivable that machines
may receive a situation-specific autonomy, which will depend on the
combination of both (i) a patient’s mortal danger and (ii) health profes-
sionals’ required time to intervene.

Situation-specific autonomy is particularly reasonable in extreme
and isolated situations, e.g. in catastrophes on Earth as well as during
manned deep-space exploration.

Finally, since MI-based Research & Development is increasing expo-
nentially fast, stronger regulations for data access, and medical devices
need fundamental operational rethinking and restructuring. For
instance, international initiatives break the mode of data sharing to
make data FAIR29: Findable, Accessible, Interoperable, and Reusable.
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