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COVID-19 mortality prediction in the intensive care unit with deep
learning based on longitudinal chest X-rays and clinical data
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Abstract
Objectives We aimed to develop deep learning models using longitudinal chest X-rays (CXRs) and clinical data to predict in-
hospital mortality of COVID-19 patients in the intensive care unit (ICU).
Methods Six hundred fifty-four patients (212 deceased, 442 alive, 5645 total CXRs) were identified across two institutions.
Imaging and clinical data from one institution were used to train five longitudinal transformer-based networks applying five-fold
cross-validation. The models were tested on data from the other institution, and pairwise comparisons were used to determine the
best-performing models.
Results A higher proportion of deceased patients had elevated white blood cell count, decreased absolute lymphocyte count, elevated
creatine concentration, and incidence of cardiovascular and chronic kidney disease. A model based on pre-ICU CXRs achieved an
AUC of 0.632 and an accuracy of 0.593, and a model based on ICU CXRs achieved an AUC of 0.697 and an accuracy of 0.657. A
model based on all longitudinal CXRs (both pre-ICU and ICU) achieved anAUCof 0.702 and an accuracy of 0.694.Amodel based on
clinical data alone achieved an AUC of 0.653 and an accuracy of 0.657. The addition of longitudinal imaging to clinical data in a
combined model significantly improved performance, reaching an AUC of 0.727 (p = 0.039) and an accuracy of 0.732.
Conclusions The addition of longitudinal CXRs to clinical data significantly improves mortality prediction with deep learning for
COVID-19 patients in the ICU.
Key Points
• Deep learning was used to predict mortality in COVID-19 ICU patients.
• Serial radiographs and clinical data were used.
• The models could inform clinical decision-making and resource allocation.
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Abbreviations
AI Artificial intelligence
AUC Area under the receiver

operating characteristic curve
COPD Chronic obstructive

pulmonary disease
CRP C-reactive protein
CT Computerized tomography
CVD Cardiovascular disease
CXR Chest X-ray
ED Emergency department
HIV Human immunodeficiency virus
HTN Hypertension
ICU Intensive care unit
IQR Interquartile range
LTBN Longitudinal transformer-based

network
RF Random forest
RT-PCR Reverse transcriptase–polymerase

chain reaction
SARS-CoV-2/COVID-19 Severe acute respiratory

syndrome coronavirus 2 disease
SpO2 Oxygen saturation
ViT Vision transformer
WBC White blood cell count

Introduction

The novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) disease (COVID-19) was first detected in
Wuhan, China, in late December 2019 and quickly became a
global health crisis [1]. As of August 2021, almost 200 million
confirmed cases have been reported globally with over four
million deaths. In the USA alone, over 600,000 deaths are
attributable to the virus [2]. Typical symptoms include fever,
dyspnea, cough, and muscle aches; however, the disease can
cause severe cardiorespiratory complications, particularly in
vulnerable populations (e.g., the elderly and those with co-
morbidities) [3]. Despite rapid vaccine development and ex-
tensive public health mitigation efforts, COVID-19 remains a
global health emergency. Additionally, novel variants threaten
to exacerbate the severity and duration of the pandemic [4, 5].

Thoracic imaging, such as computerized tomography (CT)
and chest radiograph (CXR), plays a key role not only in
initial COVID-19 detection and diagnosis, but also in the con-
tinuous monitoring of disease progression and treatment effi-
cacy during extended hospital stays [6–8]. While CXR is less
sensitive for the detection of pneumonia associated with
COVID-19 [9, 10]—particularly in less advanced stages—it

is a helpful and versatile tool for monitoring the rapid pulmo-
nary progression that is often seen in patients in the intensive
care unit (ICU) [8, 11]. Moreover, longitudinal CXRs may
provide vital information for risk stratification, clinical deci-
sion-making, and resource allocation [8]. Chest X-ray can be
performed at the bedside in many cases, making it readily
accessible and further increasing clinical utility, particularly
in resource-limited settings [12].

Despite the potential of regular monitoring with CXRs to
improve clinical care, longitudinal imaging is burdensome for
radiologists. Given the current prevalence of COVID-19,
manual, timely, and accurate interpretation of images is often
logistically impossible, particularly for rapidly deteriorating
ICU patients. Additionally, human readers are prone to vari-
ability, fatigue, and unconscious bias. To address these chal-
lenges, researchers have proposed artificial intelligence (AI)
based tools to automate chest imaging interpretation and im-
prove accuracy [11, 13–16]. For instance, AI with deep learn-
ing can predict the severity and progression of COVID-19
patients based on initial CXRs and clinical variables at pre-
sentation to the emergency department (ED) [16]. A model
based on longitudinal CXRs may improve outcome prediction
and inform clinical decision-making and resource allocation
for critically ill patients. The purpose of this study was to
develop deep learning models using longitudinal CXRs and
clinical variables to predict in-hospital mortality of COVID-
19 patients in the ICU.

Materials and methods

Clinical data acquisition and preprocessing

A retrospective chart review was performed between
March 2020 and December 2020 to identify consecutive pa-
tients who presented to the EDs of two independent hospital
systems, the University of Pennsylvania Health System in
Philadelphia, PA, USA, and Brown University–affiliated hos-
pitals in Providence, RI, USA. The institutional review boards
of both institutions approved the study, and the requirement
for written informed consent was waived. Patients were only
included in the study if there was a positive reverse
transcriptase–polymerase chain reaction (RT-PCR) test for
COVID-19 (COVID-19 RT-PCR test ; LabCorp) .
Furthermore, to focus outcome prediction on critically ill pa-
tients, only those who were admitted to the ICU were includ-
ed. To allow for longitudinal assessment, only patients with at
least two CXRs in anteroposterior view obtained in the ICU
were included.
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A subset of the data has previously been published
[16–19]. In the study by Jiao et al [16], all patients from
the University of Pennsylvania (N = 1834) and Brown
University–affiliated hospitals (N = 475) who presented
to the ED with a PCR-confirmed COVID-19 diagnosis
were included. Deep learning was then used to predict
disease severity and progression based on single-
timepoint baseline chest X-rays and clinical variables. In
the study by Wang et al [17], a further subset of the
patients from the University of Pennsylvania (N = 144)
and Brown University–affiliated hospitals (N = 31) who
presented to the ED with a PCR-confirmed COVID-19
diagnosis and available baseline CT scans were included.
Deep learning was then used to predict deterioration to
critical illness based on imaging and clinical data. Two
earlier studies used subsets of the patients in Wang et al
[17] to assess the performance of radiologists in diagnos-
ing COVID-19 [18] and the utility of AI to augment di-
agnosis by radiologists with baseline CT scans [19]. The
current study expands upon the previous by predicting
mortality in a subset of critically ill ICU patients from
Jiao et al [16] based on longitudinal CXRs and clinical
data.

For each patient, demographic, clinical, and laboratory var-
iables taken on admission to the ICU including age, sex, tem-
perature, oxygen saturation on room air (SpO2), absolute
white blood cell count (WBC), absolute lymphocyte count,
serum creatinine concentration, serum c-reactive protein
(CRP) concentration, and comorbidities such as cardiovascu-
lar disease (CVD), hypertension (HTN), chronic obstructive
pulmonary disease (COPD), chronic liver disease, chronic
kidney disease, cancer, and human immunodeficiency virus
(HIV) were collected. All continuous lab variables were
binarized prior to analysis: fever was defined as a temperature
of > 37 °C, low SpO2 as < 94%, high absoluteWBC as > 11 ×
109 cells/L, low absolute lymphocyte count as < 1 × 109 cells/
L, high serum creatinine concentration as > 1.27 mg/dL, and
high serum CRP concentration as > 1 mg/dL. The binary
outcome of in-hospital mortality was also recorded.

Chest X-ray data acquisition and preprocessing

For patients meeting inclusion criteria, all CXRs obtained
during ICU stay were identified (ICU CXRs). Furthermore,
all CXRs obtained prior to ICU admission but during the
hospital stay for the same disease course were identified
(pre-ICU CXRs). CXRs with overall poor quality were ex-
cluded. Images were downloaded from the hospital picture
archiving and communications system. Images were inverted
as necessary so that air cavities appeared dark and padded and
resized to 512 × 512 resolution. Then, pixel values were nor-
malized and scaled to 0, 1. Finally, CXRs were segmented to
generate lung masks for input to the deep learning model [16].

Deep learning architecture and training

Imaging and clinical variables from the University of
Pennsylvania were used to train longitudinal transformer-
based network (LTBN) models to predict the binary outcome
of in-hospital mortality of COVID-19 patients in the ICU
(Figure 1). The data from the University of Pennsylvania were
randomly divided into two parts, 80% of which were used for
training and 20% for internal validation. Finally, the models
were tested on an external dataset derived from Brown
University–affiliated hospitals. Five models were evaluated:
(1) longitudinal CXRs before admission to the ICU (“pre-ICU
model”), (2) longitudinal CXRs during the ICU stay (“ICU
model”), (3) all longitudinal CXRs (pre-ICU and ICU) (“lon-
gitudinal model”), (4) demographic, clinical, and laboratory
variables at the time of ICU admission only (“clinical mod-
el”), and (5) all longitudinal CXRs (pre-ICU and ICU) and
clinical variables (“combined model”).

For mortality prediction based on clinical variables, a mod-
el with three fully connected layers with 128, 32, and two
neurons was established. To prevent overfitting, a dropout
layer, which randomly set the input neuron to zero with a
probability of 0.2, was embedded between the first two fully
connected layers. To determine the relative importance of dif-
ferent clinical variables in predicting mortality, random forest
(RF) models were utilized [20]. For mortality prediction based
on CXRs, a LTBN consisting of Resnet-50 [21] and Vision
Transformer (ViT) [22], termed “R50-ViT,” was designed to
extract both local and longitudinal global representation fea-
tures. The proposed framework takes a series of longitudinal
CXRs and the corresponding lung mask as input and gener-
ates features from the lung parenchyma region. The extracted
features from all longitudinal CXRs are then combined using
global average pooling and global max pooling operations.
Finally, the combined features are fed into two fully connected
layers with 1536 and two neurons and a softmax activation
function to generate a probability score for mortality risk. The
combined mortality prediction model was derived from the
weighted sum of the longitudinal model and the clinical mod-
el, and the weights were obtained by training a fully connected
layer. Additional details of the model architecture are provid-
ed in the supplementary materials (Figure R1).

The proposed models were implemented using Python
(Version 3.6) and were run on two NVIDIA V100 GPUs for
data parallel training. The network was trained with the Adam
optimizer with an initial learning rate of 0.0005 and a poly
learning rate strategy, in which the initial rate decays by each
iteration with a power of 0.9. The batch size was set as one for
each GPU, and the model was trained for 500 epochs. The
codebase used in this study is available online (https://github.
com/chengjianhong/Covid-19-CXR.git). The full dataset used
to train and evaluate the models is not available for public
access because of patient privacy concerns but is available
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from the corresponding authors if there is a reasonable request
and approval from the institutional review boards of the
affiliated institutions.

Performance evaluation and statistical analysis

Differences in demographic, clinical, and laboratory variables
between the training and testing sets and between patients who
had died and who had survived were assessed using student’s t-
test for continuous variables and chi-square test for categorical
variables. Results are presented as median (interquartile range
[IQR]) for continuous variables and as number (percentage) for
categorical data. A two-sided p < 0.05 was considered statistical-
ly significant. Model performance was evaluated with area under
the receiver operating characteristic curve (AUC), accuracy, sen-
sitivity, specificity, and F1-score.

Role of the funding source

The funding source had no role in the study design, data col-
lection, data analysis, interpretation, or writing of the report.
All the authors have full access to the data and take full re-
sponsibility for the contents of this report and the decision to
submit it for publication.

Results

Subjects and clinical outcomes

Retrospective chart review identified 546 patients at
University of Pennsylvania–affiliated hospitals and 108 at
Brown University–affiliated hospitals meeting inclusion

Fig. 1 Data analysis workflow
and machine learning
architecture. The clinical model
consisted of three fully connected
layers with 128, 32, and two
neurons. A dropout layer with a
probability of 0.2 was embedded
between the first two layers. The
CXR model used R50-ViT with
two dense layers of 1536 and two
neurons. CXR: chest X-rays
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criteria. Patients from the University of Pennsylvania were
designated as the training set, and patients from Brown
University were designated as the testing set. A total of 5645
CXRs were available for analysis (Figure 2). The median
number of CXRs per patient was 4 (IQR 2–10) in the training
set and 6 (IQR 2–14.5) in the testing set. The median number
of days from the last ICU CXR to death was 2 (IQR 1–5) for
the training set, 2 (IQR 1–6) for the testing set, and 2 (IQR 1–
5) for all patients. There were no statistically significant de-
mographic or clinical differences between the training and
testing sets, except for a higher incidence of chronic kidney
disease in patients in the training set (p = 0.016). Of the pa-
tients included in both the training and testing sets, 212 (32%)
had died and 442 (68%) had survived. A higher proportion of
patients died in the testing set as compared to the training set
(p = 0.010). In terms of laboratory variables at the time of ICU
admission, a larger proportion of deceased patients had ele-
vated absolute WBC count (p = 0.0092), decreased absolute
lymphocyte count (p = 0.0054), and elevated creatinine con-
centration (p < 0.001). In terms of comorbidities, deceased
patients had a higher incidence of CVD (p = 0.015), COPD
(p = 0.0019), and chronic kidney disease (p = 0.036). A de-
tailed summary of demographic, laboratory, and clinical var-
iables is provided in Tables 1 and 2.

Performance results

The model based on clinical data only achieved an AUC of
0.653 and an accuracy of 0.657. The model based on pre-ICU
CXRs achieved an AUC of 0.632 and an accuracy of 0.593,
while the model based on ICU CXRs achieved an AUC of
0.697 and an accuracy of 0.657. The longitudinal model,

which considered both pre-ICU and ICU CXRs, achieved an
AUC of 0.702 and an accuracy of 0.694. The addition of
longitudinal CXRs significantly improved performance com-
pared to the clinical-only model (p = 0.039), as the combined
model reached an AUC of 0.727, an accuracy of 0.732, a
sensitivity of 0.714, a specificity of 0.746, and an F1-score
of 0.707. A detailed summary of model performance is shown
in Table 3, Table 4, and Figure 3.

Prognostic values of clinical variables

The relative importance of clinical features was investigated in
the training (Figure 4) and testing (Figure 5) datasets using RF
models. In both datasets, age was found to be highly prognos-
tic of mortality risk, followed by the presence or absence of
comorbid CVD and elevated creatinine concentration. Of the
other comorbidities considered, the least important were HIV
and chronic liver disease. Comorbid COPD was found to be
only moderately important and was more important in the
training than the testing dataset.

Discussion

This study demonstrates that a deep learning model based on
longitudinal CXRs and clinical information performs well in
predicting in-hospital mortality of COVID-19 patients in the
ICU. Five separate LTBN models were trained, and their per-
formances were compared. The longitudinal imaging model,
which included all CXRs from the time of ED presentation to
the time of death or discharge, performed slightly better than
the models based on pre-ICU CXRs, ICU CXRs, and clinical

Fig. 2 Chest X-rays in the train-
ing and testing sets. Chest X-rays
were collected from the time of
initial presentation to the emer-
gency department up until either
death in the ICU or discharge
from the ICU. The total number
of chest X-rays for each dataset
that was collected before admis-
sion to the ICU (pre-ICU) and
during the ICU stay are shown
along with the median number per
patient. N: number; IQR: inter-
quartile range; ICU: intensive
care unit
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data only. A combined model based on longitudinal imaging
and clinical data significantly outperformed one based on clin-
ical data alone.

The proposed deep learning model has the potential to im-
prove the triage of critically ill COVID-19 patients and im-
prove resource allocation in the ICU. By stratifying patients
by high and low risk, the model could help identify which
patients should be prioritized for CT or escalation of care,

particularly in resource-limited settings. Chest X-rays have
advantages over CT scans, particularly for ICU patients.
First, CXRs are often portable and can be performed at the
patient bedside, negating the need for transportation, which
could prove particularly difficult for patients requiring me-
chanical ventilation. Second, there is less contamination risk
with CXRs. TheAmerican College of Radiology recommends
a thorough cleaning of CT machines by someone wearing full

Table 1 Comparison of patient
characteristics across training and
test sets. All continuous variables
are reported as median
(interquartile range), and all
categorical variables are reported
as number (%). Statistically
significant p-values are bolded (p
< 0.05). SpO2 oxygen saturation
on room air; WBC absolute white
blood cell count; CVD
cardiovascular disease; HTN
hypertension; COPD chronic
obstructive pulmonary disease;
HIV human immunodeficiency
virus

Training set (n = 546) Testing set (n = 108) p-value

Age (years) 66 (20) 66 (14) 0.28

Male 297 (54) 62 (57) 0.14

Dead 163 (30) 49 (45) 0.010

Elevated temperature ( > 37 C) 369 (68) 73 (68) 0.91

Low SpO2 ( < 94%) 223 (41) 52 (48) 0.19

Elevated WBC count ( > 11×109/L) 159 (29) 39 (36) 0.18

Decreased lymphocyte count ( < 1 ×109/L) 339 (62) 79 (73) 0.063

Elevated creatinine ( ≥ 1.27 mg/dL) 282 (52) 53 (49) 0.70

Comorbidities

CVD 220 (40) 34 (31) 0.11

HTN 337 (62) 66 (61) 0.99

COPD 78 (14) 16 (15) 0.99

Diabetes 224 (41) 47 (44) 0.71

Chronic liver disease 27 (5) 3 (3) 0.46

Chronic kidney disease 134 (25) 14 (13) 0.016

Cancer 72 (13) 9 (8) 0.22

HIV 14 (3) 0 0.19

Table 2 Comparison of patient
characteristics who were
deceased and alive. All
continuous variables are reported
as median (interquartile range),
and all categorical variables are
reported as number (%).
Statistically significant p-values
are bolded (p < 0.05). SpO2
oxygen saturation on room air;
WBC absolute white blood cell
count; CVD cardiovascular
disease; HTN hypertension;
COPD chronic obstructive
pulmonary disease; HIV human
immunodeficiency virus

Dead

(n = 212)

Alive

(n = 442)

p-value

Age (years) 71 (17) 63 (20) < 0.0001

Male 114 (54) 245 (55) 0.75

Elevated temperature ( > 37 C) 140 (66) 302 (68) 0.62

Low SpO2 ( < 94%) 101 (48) 174 (39) 0.054

Elevated WBC count ( > 11×109/L) 79 (37) 119 (27) 0.0092

Decreased lymphocyte count ( < 1 ×109/L) 152 (72) 266 (60) 0.0054

Elevated creatinine ( ≥ 1.27 mg/dL) 136 (64) 199 (45) < 0.0001

Comorbidities

CVD 97 (46) 157 (36) 0.015

HTN 131 (62) 272 (62) 0.98

COPD 44 (21) 50 (11) 0.0019

Diabetes 80 (38) 191 (43) 0.21

Chronic liver disease 9 (4) 21 (5) 0.93

Chronic kidney disease 59 (28) 89 (20) 0.036

Cancer 29 (14) 52 (12) 0.57

HIV 4 (2) 10 (2) 0.98
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protective equipment following each scan [23]. Moreover, CT
rooms may need to be unavailable for approximately 1 h fol-
lowing imaging of infected patients to allow for proper air
circulation [23]. Given the prevalence of COVID-19 and the
ongoing burden placed on hospital systems, such a delay
could lead to substantial problems with patient care. Unlike
CT machines, the surfaces of portable CXRs can be easily
cleaned and even transported to ambulatory care facilities
when deemed medically appropriate.

This study is novel in that it considers longitudinal CXRs
rather than single-timepoint imaging. The results indicate that
the addition of more time-series information slightly improves
model performance, as the full longitudinal model was more
accurate and sensitive and had a higher AUC and F1-score
than both the pre-ICU and ICU models. Several previous
studies have used single-timepoint imaging acquired at the
time of hospital admission to predict in-hospital mortality or
disease progression with machine learning and statistical
modeling approaches. For instance, a previous study by our
group found that deep learning based on the initial CXR and
clinical variables at presentation to the ED can predict disease
severity and progression with an AUC of 0.846 and 0.792,
respectively, on external datasets [16]. In another study by our
group, deep learning models predicted progression to critical
illness with a concordance index of 0.80 in ED patients with
baseline CT and clinical data [17]. Likewise, Fang et al [24]
used chest CT features to develop a severity score at baseline,
which was used to train three machine learning models to

predict the risk of in-hospital mortality and ICU admission.
The model achieved the best AUC of 0.813 in predicting ICU
admission and an AUC of 0.741 in predicting mortality.
Maroldi and colleagues [25] used a semi-quantitative ap-
proach to manually score baseline CXRs at a hospital presen-
tation. Multivariate logistic regression found that these scores
correlated well with subsequent in-hospital mortality. Beyond
mortality risk prediction, researchers have also used baseline
imaging to predict the length of hospital stay. Wang et al [26]
used a deep learningmodel to stratify patients by high- or low-
risk groups based on hospital stay duration using baseline CT
features. However, it is difficult to compare results from these
studies to the present, as the present study focused specifically
on ICU patients, while the previous studies included all pa-
tients admitted to the hospital.

Beyond the use of longitudinal imaging, another strength
of this study is that it combines imaging and clinical variables
into a single model. The results indicate that the addition of
longitudinal imaging significantly improves the clinical-only
model, increasing the AUC from 0.653 to 0.727 (p = 0.039)
and the accuracy from 0.657 to 0.732. In the study by Jiao and
colleagues [16], the addition of single-timepoint CXR data to
the clinical-only model improved both progression and sever-
ity predictions. Still, most previous studies that have used
machine learning or statistical modeling to predict in-
hospital mortality have relied solely on clinical or laboratory
variables rather than exploring the combination of imaging
and clinical data.

Table 3 Performance of mortality
prediction models on the external
testing set. The highest values for
each metric are bolded. AUC area
under the receiver operating
characteristic curve; CI
confidence interval. ICU
intensive care unit

Method AUC

(95% CI)

Accuracy

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

F1-score

(95% CI)

Clinical model 0.653

(0.563–0.738)

0.657

(0.583–0.732)

0.592

(0.480–0.711)

0.712

(0.611–0.807)

0.609

(0.512–0.699)

Pre-ICU model 0.632

(0.539–0.713)

0.593

(0.519–0.667)

0.593

(0.479–0.707)

0.591

(0.491–0.704)

0.569

(0.469–0.655)

ICU model 0.697

(0.615–0.776)

0.657

(0.583–0.732)

0.674

(0.565–0.780)

0.644

(0.546–0.746)

0.638

(0.547–0.729)

Longitudinal model 0.702

(0.613–0.782)

0.694

(0.611–0.759)

0.756

(0.644–0.857)

0.642

(0.531–0.745)

0.690

(0.593–0.771)

Combined model 0.727

(0.645–0.809)

0.732

(0.667–0.806)

0.714

(0.609–0.822)

0.746

(0.648–0.833)

0.707

(0.620–0.786)

Table 4 Pairwise comparison of
model performance by receiver
operating characteristic curves.
For each comparison, the p-value
is shown, and statistically
significant values (p<0.05) are
bolded. ICU intensive care unit

Method Pre-ICU model ICU model Longitudinal model Combined model

Clinical model 0.77 0.57 0.50 0.039

Pre-ICU model 0.33 0.21 0.13

ICU model 0.90 0.66

Longitudinal model 0.71
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Our clinical-only model achieved a moderate performance,
with an AUC of 0.653. Other models using clinical or labora-
tory variables to predict prognosis in COVID-19 patients have
achieved better performance. For instance, Zhu et al [27] con-
sidered 78 clinical variables collected at the time of hospital
presentation to predict mortality, with the top five most im-
portant variables allowing the model to achieve the best AUC
of 0.968. Likewise, Hu et al [28] found that four clinical var-
iables could predict in-hospital mortality with good accuracy,
and Ko et al [29] found that an ensemble model based on deep
neural networks and RFs could predict in-hospital mortality
based on 28 blood biomarkers with 100% sensitivity. Another

ensemble model with four machine learning methods based
on 14 clinical variables was able to stratify patients by mor-
tality risk with the best AUC of 0.976 [30]. In a large cohort,
Vaid and colleagues [31] used clinical variables at admission
to predict in-hospital mortality and clinical events at three,
five, seven, and 10 days from admission, achieving the best
AUC of 0.88 at 3 days. Multiple other studies have used
similar methods [32–38].

While our clinical-only model performed worse than many
in the literature, several factors should be considered. First, we
only used variables that are routinely collected in the ICU to
maximize the potential for integration of the model into the
existing clinical workflow. Contrastively, Zhu et al [27] con-
sidered 78 total variables, and Ko et al [29] used 28 blood
biomarkers. Both studies additionally used D-dimer concen-
trations, which we did not. A further consideration is that we
chose to focus only on critically ill ICU patients. It may be
inherently more difficult to predict outcomes in these patients,
given that treatment recommendations evolved over the
course of the outbreak. As such, patients diagnosed early
may have been treated very differently from those diagnosed
later, and consequently, their outcomes may be different de-
spite similarities in baseline clinical and laboratory findings.

To identify the clinical and demographic variables that
were most predictive of mortality, we performed a RF analy-
sis. In both the training and testing datasets, age was found to
be highly prognostic of mortality risk, followed by the pres-
ence or absence of comorbid CVD and elevated creatinine
concentration. In other studies that performed similar analy-
ses, age was also the most valuable factor in mortality predic-
tion [22, 31, 33–39]. Similarly, the high concentration of CRP
and the presence of one or more comorbidities were also
found to be highly predictive [21, 22, 30, 31, 33, 34,
36–39]. Finally, high respiratory rate and SpO2 at admission
were important for predictive accuracy [30, 33, 35, 38]. Our

Fig. 3 Receiver operating characteristic (ROC) curves of mortality pre-
diction models. p-values represent the difference from chance
(AUC=0.5). AUC: area under the curve. ICU: intensive care unit

Fig. 4 Relative feature
importance of clinical variables in
the training data. CVD:
cardiovascular disease; SpO2:
oxygen saturation on room air;
HTN: hypertension; COPD:
chronic obstructive pulmonary
disease; WBC: absolute white
blood cell count; HIV: human
immunodeficiency virus
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results indicate that SpO2 is only moderately important for
mortality prediction compared to the other variables.
Because our cohort was limited to critically ill ICU patients,
a large percentage of both the survivor (39%) and non-
survivor cohorts (48%) had low SpO2 (SpO2 < 94, p =
0.055). In comparison, for general COVID-19 positive pa-
tients, the average SpO2 of non-survivors is typically statisti-
cally lower (e.g., SpO2 87%) than that of survivors (e.g.,
SpO2 97%) [27]. Since the SpO2 was universally decreased
and less variable in our cohort of ICU patients than in other
studies, SpO2 was not as prognostically important in our
model.

This study has several limitations. Like most machine
learning models, there is a concern for generalizability, espe-
cially given that the model was trained using data obtained
from a single institution, and the clinical landscape of the
pandemic is quickly evolving. According to recent studies,
while ICU admissions may be increasing due to increased
virulence of the delta variant, death rates of ICU patients are
relatively low, and there is an increasing incidence in children
[4, 5, 39]. It also remains unclear whether the novel omicron
variant causes more severe disease compared to infections
with other variants. Moreover, the cohort in this study was
entirely unvaccinated, as data collection was terminated in
December 2020, and vaccines were not widely available until
January 2021 [40]. It is thus unknown whether the current
model will work in a highly vaccinated population with dif-
ferent variants of the disease. In fact, a recent study demon-
strated that there was a deficit in all-cause mortality in a highly
vaccinated population during the initial delta variant period
from June 2021 to August 28, 2021 [41]. Given the lack of
data on chest imaging characteristics of vaccinated individuals
with novel variants, we are unable to predict the utility of this
model on the current ICU population.

Another limitation is that we did not include treatment as a
clinical variable, whichmay be an important consideration, given

that critically ill patients are often treated aggressively and with a
wide variation of approaches.Also, given the retrospective nature
of data collection, there were variable numbers of CXRs collect-
ed at different times for different patients, prohibiting the devel-
opment of a truly longitudinal model. Another limitation is that
the median time from the last ICU CXR to death was 2 days,
which provides a short window for aggressive intervention for
patients identified as high risk. As shown in supplementary
Figure R2, the visual appearance of CXRs from patients with
different clinical outcomes was highly variable. In some cases, a
radiologist would likely be able tomake an accurate prediction of
mortality risk with purely visual observation. Nevertheless, time-
ly interpretation of images by a radiologist is often logistically
impossible for rapidly deteriorating ICUpatients during COVID-
19 surges. Reading delays could potentially lead to the postpone-
ment of life-saving interventions for critically ill patients with
imminent mortality risk. The automated AI model could triage
incoming CXRs rapidly, allowing radiologists to prioritize
workflow. Still, it would be of interest to test model performance
when only early CXRs are considered (e.g., > 7 days from
mortality).

While the best-performing model achieved good perfor-
mance, whether the model is useful for triage in a real clinical
setting is unclear. This will require prospective testing, which
is a future aim. In the current model, the 95% confidence
intervals for sensitivity and specificity ranged from 0.609 to
0.822 and 0.648 to 0.833, respectively. As such, at best,
17.8% of patients that progress to mortality may be missed
(false negatives), and 16.7% of patients that survive may be
identified as high risk (false positives). At worst, 39.1% of
patients that progress to mortality may be missed (false nega-
tives), and 35.2% of patients that survive may be identified as
high risk (false positives). Despite the potential for false neg-
atives and positives, we hypothesize that the model would
serve clinically useful for rapidly triaging patients, particularly
in overburdened ICUs. Finally, the models were designed to

Fig. 5 Relative feature
importance of clinical variables in
the testing data. CVD:
cardiovascular disease; SpO2:
oxygen saturation on room air;
HTN: hypertension; COPD:
chronic obstructive pulmonary
disease; WBC: absolute white
blood cell count; HIV: human
immunodeficiency virus
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predict mortality as a binary outcome rather than predicting
overall survival time. A model which predicts not only the
occurrence of mortality but also time to mortality would be
of greater clinical utility.

In summary, we demonstrate that a deep learning model
based on longitudinal CXRs and routinely collected clinical
variables performs well in predicting in-hospital mortality of
COVID-19 patients in the ICU. The addition of longitudinal
CXRs improves the performance of models based on clinical
data alone. Although prospective validation is required, the
model has the potential to improve clinical decision-making
and resource allocation for critically ill COVID-19 patients.
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