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Assessing the progression of movement disorders such as Parkinson’s Disease (PD) is

key in adjusting therapeutic interventions. However, current methods are still based on

subjective factors such as visual observation, resulting in significant inter-rater variability

on clinical scales such as UPDRS. Recent studies show the potential of sensor-based

methods to address this limitation. The goal of this systematic review is to provide an

up-to-date analysis of contactless sensor-based methods to estimate hand dexterity

UPDRS scores in PD patients. Two hundred and twenty-four abstracts were screened

and nine articles selected for analysis. Evidence obtained in a cumulative cohort of

n = 187 patients and 1, 385 samples indicates that contactless sensors, particularly the

Leap Motion Controller (LMC), can be used to assess UPDRS hand motor tasks 3.4, 3.5,

3.6, 3.15, and 3.17, although accuracy varies. Early evidence shows that sensor-based

methods have clinical potential and might, after refinement, complement, or serve as a

support to subjective assessment procedures. Given the nature of UPDRS assessment,

future studies should observe whether LMC classification error falls within inter-rater

variability for clinician-measured UPDRS scores to validate its clinical utility. Conversely,

variables relevant to LMC classification such as power spectral densities or movement

opening and closing speeds could set the basis for the design of more objective expert

systems to assess hand dexterity in PD.

Keywords: bradykinesia, Parkinson’s disease, UPDRS, leap motion, contactless

1. INTRODUCTION

Parkinson’s Disease (PD) is a movement disorder caused by the degeneration of the dopaminergic
neurons of the substantia nigra pars compacta, a reduction of striatal dopamine, and is characterized
by the potential presence of Lewy bodies (Jameson, 2018). PD requires constant monitoring to
track progression and perform therapeutic adjustments. Monitoring is currently performed with
questionnaires such as the Unified PD Rating Scale (UPDRS) (Goetz et al., 2008).

UPDRS rates different aspects of PD through visual observation of a series of tasks. These
tasks are designed to monitor, among others, the most important symptoms of PD, also known as
cardinal signs: resting tremors, asymmetry, bradykinesia, and a positive response to dopaminergic
replacement therapy. In the case of hand dexterity, these tasks are related to bradykinesia and hand
tremors, performing tasks such as finger tapping. UPDRS then rates these tasks on scales from
zero (no symptoms) to four (patient is unable to perform the task), through visual observation.
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While the criteria to identify zeroes and fours are mostly
clear, intermediate scores are considerably more ambiguous,
which irrevocably leads to sensibility and reliability problems
(Patrick et al., 2001). UPDRS is commonly complemented with
patient diaries, which, although helpful, can also be biased by
the subjective view of the patient (Hauser et al., 2004). The
fact that this ambiguity introduces variability in assessments
is well-documented (Meara et al., 1999; Patrick et al., 2001).
Furthermore, the relationship between PD and similar conditions
also accompanied by hand tremor, such as Essential Tremor (ET),
is still unclear (Jimenez-Jimenez et al., 2012).

A solution to minimize subjectivity is to introduce sensor-
based measurements (Chaudhry et al., 2006), which provide
a reproducible and objective assessment of hand tremor and
bradykinesia. The Leap Motion Controller (LMC) has been
proposed for this task (Garcia-Agundez et al., 2019). Capturing
hand movements via contactless sensors has the potential to
reduce ambiguity, providing neurologists with more objective
assessments of hand dexterity that may lead to more accurate
therapeutic adjustments. At the same time, variables that provide
meaningful information for the estimation of UPDRS scores
could be used to establish more objective assessment scales,
allowing for a finer resolution in hand dexterity assessment and
better adjusted pharmacologic therapies.

The goal of this article is to provide a systematic review of
recent advances in hand dexterity assessment using contactless
sensors in PD patients, in the domains of hand tremor and
bradykinesia. This review aims to provide further insight into the
feasibility and reliability of this paradigm, as well as suggesting
best practice guidelines for both engineers and clinicians on how
to proceed from this point.

2. METHODS

As a basis for this systematic review, we searched the databases
Pubmed, ScienceDirect, IEEE Xplore, and Cochrane for articles
matching the search query:

(Parkinson OR Tremor) AND (Leap Motion OR Contactless OR
Infared OR Lidar)

on March 31, 2021. This search yielded the following results:

• 28 matches in Pubmed
• 168 in ScienceDirect, including 10 duplicates
• 18 in IEEE Xplore, including 5 duplicates
• 3 in Cochrane, including 3 duplicates

The search was complemented by seven additional articles
selected from the references of search matches, yielding 224
abstracts for screening. The abstracts of these matches were
filtered according to the following criteria:

1. Research articles
2. Related to PD
3. Related to hand tremor or bradykinesia

This filtering reduced the abstracts to 47 full-text articles assessed
for eligibility. These full-text articles were selected for analysis if
they met the following inclusion criteria:

1. Articles presenting a method to measure hand tremor or
bradykinesia using a contactless approach

2. In patients with PD
3. Aiming to link sensor data to clinical functional performance

scores (MDS-UPDRS-III or similar)

Conversely, articles were excluded if they met at least one of the
following exclusion criteria:

1. Articles not related to hand tremor or bradykinesia. Thirteen
articles were excluded with this criterion.

2. Articles without participants (technical or otherwise
conceptual papers). Seven further exclusions.

3. Articles aiming to test a novel rehabilitation tool or otherwise
not linking sensor data to clinical functional performance
scores. Nine further exclusions.

4. Articles not using contactless sensors. Three further
exclusions.

5. Articles aiming to classify between PD patients and controls
exclusively and not to assess symptom severity. Six further
exclusions.

Finally resulting in n=9 articles for the qualitative and
quantitative analysis (Khan et al., 2014; Butt et al., 2017, 2018;
Lugo et al., 2017; Cakmak et al., 2018; Lee et al., 2019; Vivar et al.,
2019; Williams et al., 2020a,b). Of the selected articles, six were
first identified in the Pubmed search, one in ScienceDirect, and
two were selected from the additional articles. This procedure
was conducted in accordance with the PRISMA guidelines. A.G.
was responsible for the selection and data collection process.
The following data were sought from the articles: cohort data,
procedure data (assessment method, sensor implementation),
classification data, and classification accuracy. No studies are
clinical trials and no bias assessment was conducted. The
PRISMA flow diagram is included in Figure 1.

3. RESULTS

All identified articles use some form of video source, including
hand detection and tracking. Six of the nine articles use the LMC
(Butt et al., 2017, 2018; Lugo et al., 2017; Cakmak et al., 2018;
Lee et al., 2019; Vivar et al., 2019), while three use other video
sources (Khan et al., 2014;Williams et al., 2020a,b). Essentially, all
studies follow the same structure: given a dataset of PD patients
performing a certain MDS-UPDRS III task (e.g., finger tapping)
rated by one or more neurologists and captured with a sensor,
the resulting task score (or a linear regression model) is inferred
using points of interest of the hand, defined by a series of features,
with a classification method, as depicted in Figure 2.

The identified studies implement one or more of the following
UPDRS specific tasks:

• Task 3.4, Finger Tapping: The patient taps the index finger on
the thumb 10 times as quickly and as big as possible. Out of
the nine identified studies, seven analyse this task (Khan et al.,
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FIGURE 1 | PRISMA 2019 flow diagram.

2014; Butt et al., 2017, 2018; Cakmak et al., 2018; Lee et al.,
2019; Williams et al., 2020a,b).

• Task 3.5, HandMovements: The patient makes a tight fist, then
opens the hand 10 times as fully and as quickly as possible. Out

of the nine studies, three analyse this task (Butt et al., 2017,
2018; Lee et al., 2019).

• Task 3.6, Pronation-Supination: The patient extends the arm
with the palm down, then runs the palm up and down
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FIGURE 2 | Study design flow diagram.

TABLE 1 | Study tasks and signal of interest.

References Finger tapping Hand movements Pronation-supination Postural tremor Kinetic tremor

Khan et al. (2014) Index finger position

Vivar et al. (2019) Palm center × coordinate Palm center × coordinate

Butt et al. (2017) Thumb-index

fingertip distance

Sum of all palm-fingertip

distances

Palm roll angle Fingertip velocity average

Butt et al. (2018) Thumb-index

fingertip distance

Sum of all palm-fingertip

distances

Palm roll angle Fingertip velocity average

Lee et al. (2019) Thumb-index

fingertip distance

Palm-phalanxes median

cosine angle

Palm roll angle

Cakmak et al. (2018) Thumb-index

fingertip distance

Williams et al. (2020a) Thumb-index

fingertip distance

Williams et al. (2020b) Thumb-index

fingertip distance

Lugo et al. (2017) Palm center coordinates Palm center coordinates

alternately 10 times as fast and as fully as possible. The three
same studies as above analyse this task (Butt et al., 2017, 2018;
Lee et al., 2019).

• Task 3.15, Postural Tremor: The patient stretches the arm with
the palms down. Tremor in this posture is observed for 10 s.
Out of the nine studies, four analyse this task (Butt et al., 2017,
2018; Lugo et al., 2017; Vivar et al., 2019).

• Task 3.17, Kinetic Tremor: The patient performs at least
three finger-to-nose maneuvers. Tremor in this movement is
observed. Out of the nine studies, two analyse this task (Lugo
et al., 2017; Vivar et al., 2019).

Table 1 summarizes the implemented tasks and signal of interest
of each study. With the exception of task 3.5, the choice of hand
region of interest for each task is consistent.

Table 2 presents the study devices, cohorts, total number, and
type of samples, as well as themain study goals. The studies either
aim to predict the UPDRS rating of a given sample (Khan et al.,
2014; Lugo et al., 2017; Vivar et al., 2019;Williams et al., 2020a) or
build a linear regression model relating variables extracted from
the signals described in Table 1 and UPDRS scores (Butt et al.,
2017, 2018; Cakmak et al., 2018; Lee et al., 2019; Williams et al.,
2020b). In this study, we refer to sample as an instance of either
hand of a PD patient performing a UPDRS task. Cumulatively,

the nine identified studies have a cohort of n = 187 patients and
1, 385 samples.

In the following, we divide the qualitative analysis into
two subsections. Section 3.1 compares the results of studies
that aim to evaluate the scores of UPDRS tasks related to
tremor, 3.15 (Postural Tremor) and/or 3.16 (Kinetic Tremor),
while section 3.2 compares the results of studies that aim to
evaluate bradykinesia with Tasks 3.4 (Finger Tapping), 3.5 (Hand
Movements), and 3.6 (Pronation-Supination).

3.1. Tremor
Four studies aimed to assess hand tremor in PD using contactless
sensors (Butt et al., 2017, 2018; Lugo et al., 2017; Vivar et al.,
2019). All studies used the LMC and either the center of the
palm (Lugo et al., 2017; Vivar et al., 2019) or changes in fingertip
velocity (Butt et al., 2017, 2018). Butt et al. suggest the use of
a 14 Hz lowpass filter, which should not affect the detection
of Parkinsonian tremors. The studies also differed greatly in
the choice of variables, as well as in the resulting accuracy, if
classification was attempted.

Vivar et al. (2019) proposed the use of histogram-based
variables, computing an addition and subtraction of data points
within a sliding window of 449 samples that advances through
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TABLE 2 | Study cohorts and goals.

References Resolution N Sex M/F Age range or

Mean (SD)

Number of

samples

Study goals

Khan et al. (2014) Camera 352 ×

288@25 Hz

13 8/5 50–75 387 Classify UPDRS scores in 0, 1, or 2

Vivar et al. (2019) LMC@40 Hz 20 11/9 69 (14) 39 Classify UPDRS scores in 0, 1, or 2

Butt et al. (2017) LMC@35 Hz 16 11/9 68 (7) 96 UPDRS Linear regression

Butt et al. (2018) LMC@35 Hz 16 11/9 69 (9) 96 UPDRS Linear regression

Lee et al. (2019) LMC@120 Hz 8 6/2 44-60 144 UPDRS Linear regression

Cakmak et al. (2018) LMC@100 Hz 24 17/7 57 (9) 378 UPDRS Linear regression

Williams et al. (2020a) Camera 1,920 ×

1,080@60 Hz

20 67 (10) 40 Classify UPDRS scores in <=1 or >1

Williams et al. (2020b) Camera 1,920 ×

1,080@60 Hz

37 24/13 68 (10) 73 UPDRS Linear regression

Lugo et al. (2017) LMC@40 Hz 33 21/12 65 (12) 132 Classify UPDRS scores in 0, 1, 2, or 3

TABLE 3 | Classification results for tremor.

References Signal of Interest Signal

preprocessing

Variables Results

Vivar et al. (2019) Palm center × coordinate None Sum and difference of histograms Bagged Tree classifier, 97% accuracy

Butt et al. (2017) Fingertip velocity average 14 Hz Lowpass 8–12 Hz Power spectral density, signal strength No significant correlations found

Butt et al. (2018) Fingertip velocity average 14 Hz Lowpass 8–12 Hz Power spectral density, signal strength R = 0.59 for signal strength

Lugo et al. (2017) Palm center coordinates 15-frame windowing Square Euclidean and Chi Square distance, Earth

Mover’s distance, Manhattan distance, Shannon

entropy, Log energy enthropy

Unspecified classifier, 73.81% accuracy

the data. Standard features are then computed from these
histograms, with contrast and homogeneity providing the best
performance. This yielded the best performance in this task
group, with an accuracy over 97% classifying scores of 0, 1, and 2.

Lugo et al. (2017) performed a similar study, using a
significantly shorter windowing of 15 frames, as well as a different
choice of variables. The resulting performance was worse at 74%,
albeit the sample size was larger and a patient with a score of 3 on
both hands was included.

Finally, Butt et al. (2017, 2018) did not aim to estimate UPDRS
scores but rather find variables correlated with said scores. The
first study found no correlations between the chosen variables
(signal strength and power in the 8–12 Hz band). The second
study used the same variables and identified a correlation of
R = 0.59 with signal strength.

Table 3 summarizes the differences in these studies. Overall,
data indicate that detecting resting tremor is feasible, but kinetic
tremor is more difficult to identify.

3.2. Bradykinesia
Seven studies aimed to assess at least one UPDRS task related
to bradykinesia using contactless sensors (Khan et al., 2014; Butt
et al., 2017, 2018; Cakmak et al., 2018; Lee et al., 2019; Williams
et al., 2020a,b). These studies used a mixture of LMC and video,
and differed greatly in choice of signals and variables. As all of
these studies implemented Task 3.4 (Finger Tapping) but only
three included additional tasks (Butt et al., 2017, 2018; Lee et al.,

2019). Table 4 summarizes the results for all tasks. The following
subsections offer a detailed analysis of each task.

3.2.1. Task 3.4 (Finger Tapping)
With the exception of Khan et al. (2014), all studies used
the Euclidean distance between the tip of the index finger
and the thumb as signal of interest. All studies are also
reasonably consistent in the choice of variables: number of
repetitions, amplitudes, variability of amplitude (particularly
a decrease in amplitude with subsequent repetitions), speeds
(generally considered as opening and closing speeds separately),
accelerations, and frequency domain analysis. We can divide
these seven studies into two groups: two that classify UPDRS
scores (Khan et al., 2014; Williams et al., 2020a) and five that use
linear regression instead (Butt et al., 2017, 2018; Cakmak et al.,
2018; Lee et al., 2019; Williams et al., 2020b).

The two studies aiming at classification (Khan et al., 2014;
Williams et al., 2020a) used video instead of a LMC. Interestingly,
the resolution and frequency employed by Khan et al. (2014)
is significantly lower, with a smaller number of participants but
a significantly larger number of samples and a more complex
classification task, as they aim to classify ternary scores of 0, 1,
and 2 instead of classifying scores binarily as≤1 vs.>1 (Williams
et al., 2020a). Both obtained the best results when using support
vector machines, with overall accuracies of 82% for Khan (Khan
et al., 2014) and 84% for Williams (Williams et al., 2020a).
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TABLE 4 | Classification results for bradykinesia.

Finger tapping Signal preprocessing Variables Results

Khan et al. (2014) Moving average filter, Standard

deviation outlier removal

Average of the Cross-Correlation between

normalized maxima and minima, total taps, tapping

speed, tapping speed variation, differences

between first and second half of the task, opening

velocity, closing velocity, zero crossing rate, signal

energy, facial movements

SVM classifier, 82% accuracy

Butt et al. (2017) 14 Hz Lowpass Number of repetitions, speeds, variability of

frequency and amplitude, power spectral density

Significant correlations for opening speed

(R = 0.515) and closing speed (R = 0.602)

Butt et al. (2018) 14 Hz Lowpass Number of repetitions, speeds, variability of

frequency and amplitude, power spectral density

Significant Correlations for number of repetitions

(R = 0.728), closing speed (R = 0.804) and opening

speed (R = 0.836)

Lee et al. (2019) 120 Hz Linear interpolation Amplitudes, frequencies, velocities and slopes Significant correlations for velocity and frequency

(R = 0.45), R = 0.86 combining all tasks

Cakmak et al. (2018) None Mean and standard deviation of speed,

acceleration, frequency

root mean square error of 4.37 points (7.8%) for

UPDRS-III and 2.12 points (10.7%) for bradykinesia

Williams et al. (2020a) PCA Power spectral density, frequency, peaks, ratio of

maxima to minima, standard deviation of peaks

SVM classifier, 84% accuracy

Williams et al. (2020b) Savitzky-Golay Amplitude, speed, amplitude variability, power

spectral density

Significant correlations for speed (R = 0.56),

amplitude variability (R = 0.61) and rhythm regularity

(R = 0.50), R = 0.69 using all variables

Hand movements Signal preprocessing Variables Hand movements results

Butt et al. (2017) 14 Hz Lowpass Number of repetitions, speeds, variability of

frequency and amplitude, power spectral density

Significant correlations for variability of frequency

(R = 0.685) and number of repetitions (R = 0.630)

Butt et al. (2018) 14 Hz Lowpass Number of repetitions, speeds, variability of

frequency and amplitude, power spectral density

Significant correlations for opening speed

(R = 0.647), Variability of amplitude (R = 0.647),

closing speed (= 0.639) and number of repetitions

(R = 0.539)

Lee et al. (2019) 120 Hz Linear interpolation Amplitudes, frequencies, velocities and slopes Significant correlation for velocity (R = 0.69),

R = 0.86 combining all tasks

Pronation-

supination

Signal preprocessing Variables Pronation-supination results

Butt et al. (2017) 14 Hz Lowpass Number of repetitions, speeds, variability of

frequency and amplitude, power spectral density

Significant correlation for variability of amplitude

(R = 0.858)

Butt et al. (2018) 14 Hz Lowpass Number of repetitions, speeds, variability of

frequency and amplitude, power spectral density

Significant correlation for variability of frequency

(R = 0.488)

Lee et al. (2019) 120 Hz Linear interpolation Amplitudes, frequencies, velocities and slopes Significant correlation for amplitude (R = 0.56),

R = 0.86 combining all tasks

The remaining five studies used linear regression (Butt et al.,
2017, 2018; Cakmak et al., 2018; Lee et al., 2019; Williams et al.,
2020b). Some, but not all studies report the correlation of each
of the variables individually. Overall, correlated variables fall
within the [0.5, 0.6] range, with Butt et al. (2018) reporting
significantly higher correlations for opening (R = 0.836) and
closing (R = 0.804) speeds. Table 5 provides a direct comparison
of the correlations of these studies. Overall, data indicate that
assessing UPDRS scores with video is feasible, and opening and
closing speeds show good correlations with UPDRS scores.

3.2.2. Task 3.5 (Hand Movements)
Concerning Task 3.5 (Hand Movements), no classification has
been implemented yet. Lee et al. (2019) explored the correlation
of a 120 Hz linearly interpolated signal analyzed through

amplitudes, frequencies, velocities, and slopes. The number of
participants was small (eight), but a large number of samples was
collected by measuring with and without deep brain stimulation.
They employed the angle between the fingers and the palm
as signal of interest. As they did not explore the regression
coefficients on each task individually but rather build a global
linear regression model, only the velocity of Task 3.5 is reported
as showing a relevant correlation of R = 0.69.

Butt et al. (2017, 2018) also implemented this task in their
two studies, using the Euclidean distance between palm and
fingertips. Again employing a 14 Hz lowpass filter, they explored
a very similar set of variables, using number of repetitions,
speeds, the variability of frequency and amplitude, and power
spectral density. They do report the individual correlation of
each of the explored variables, showing significant correlations in
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TABLE 5 | Correlation results for bradykinesia.

Finger tapping Opening speeds Closing speeds Number of repetitions Frequency Amplitude

Butt et al. (2017) −0.515 −0.602

Butt et al. (2018) −0.836 −0.804 −0.728 −0.006 −0.188

Lee et al. (2019) 0.45a 0.45a 0.45a

Williams et al. (2020b) −0.56b −0.56b −0.5 0.61

Hand movements Opening speeds Closing speeds Number of repetitions Frequency Amplitude

Butt et al. (2017) −0.63 −0.685

Butt et al. (2018) −0.647 −0.639 −0.539 0.313 −0.647

Lee et al. (2019) 0.69b 0.69b

Pronation-supination Opening speeds Closing speeds Number of repetitions Frequency Amplitude

Butt et al. (2017) −0.858

Butt et al. (2018) −0.009 −0.025 −0.257 −0.488 0.307

Lee et al. (2019) 0.56

Amplitude refers to amplitude or variations thereof. Frequency refers to frequency or variations thereof. aCombination of all elements. bNo distinction between opening and closing

speeds.

most variables. Interestingly, the correlations vary substantially
between both studies.

Table 5 offers a comparison between the correlations of these
three studies. Overall, data indicate good correlations for opening
and closing speeds. No study has attempted to classify UPDRS
scores so far.

3.2.3. Task 3.6 (Pronation-Supination)
The same three studies as in the previous subsection
implemented Task 3.6, using the same variables as in the
previous task but focusing on a different point of the hand, the
roll angle of the palm. All three studies report worse results with
Task 3.6, as summarized in Table 5. Overall, data only shows
good correlations for amplitude and variability of amplitude. No
study has attempted to classify UPDRS scores so far.

4. DISCUSSION

In this systematic review, we analyzed recent advances in sensor-
based, UPDRS-inspired tremor and bradykinesia assessment in
PD patients.

Concerning tremor, it seems that the coordinates of the palm
center are a good predictor of UPDRS scores. Larger windows as
well as statistical variables seem to be a better choice. Although
the studies did not include patients with higher scores (three and
four) classifying these should be easier as tremor is expected to
be more severe. Although the limited number of studies does not
yield definite conclusions, it would seem that classifying tremor
UPDRS scores is nearly as accurate as classifying PD patients and
healthy controls.

Figure 3 summarizes the number of samples, studies and
sample-weighted correlations of all UPDRS bradykinesia tasks.
The number of repetitions, opening and closing speeds,
combined with changes in amplitude as the task progresses,

seem to best characterize the rating in Task 3.4 (Finger
Tapping). Implemented classification schemes in this scenario
can already achieve excellent results, with accuracies over 80%
when discriminating scores of 0, 1, and 2. As is the case with
tremor, including higher scores would probably not decrease
accuracy as these represent patients that are either almost (3) or
fully (4) incapable of performing the task.

For Tasks 3.5 (Hand Movements) and 3.6 (Pronation-
Supination) no full classification has been implemented yet. Early
results seem to suggest that this task is more difficult to rate,
as correlations between variables and neurologist ratings are
somewhat lower, in the 0.5–0.6 range. A significant exception
is variability of amplitude, which seemed to perform better in
Butt et al. (2017).

In this study, we limited ourselves to contactless sensors
because we believe the advantages of this approach are significant.
However, contactless sensors cannot provide a comprehensive
method to measure and quantify all motor symptoms of PD,
since they cannot assess the stiffness and rigidity of the arms
and legs. They are also more limited than electromyography,
which provides richer information on muscular activity. On the
positive side, they do not require any adjustment to the patient or
any interaction other than the performance of the manual tasks,
providing an ideal setup tomonitor some of the motor symptoms
of PD remotely as an addition, rather than a substitution, of
more comprehensive PD assessment methods. Other contactless
approaches, such as e.g., Lidar, remain to be explored. Finally, the
LMC also presents the additional limitations of infrared sensors,
such as measurement noise. Numerous authors indicate that the
LMC is fallible depending on environmental light and dirt on the
lens being present.

In spite of the limitations of this study, and considering the
number of relevant studies is still small, available early evidence
points to the LMC offering a feasible, objective alternative to
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FIGURE 3 | Number of samples and (number of articles) using different variables and UPDRS bradykinesia tasks (top) and sample-weighted correlations (bottom).

visual observation to capture and rate some features of hand
motility in PD, as well as in other related diseases. Evidence shows
that sensor-basedmethods have clinical potential andmight, after
refinement, complement, or even replace subjective assessment
procedures, not only in patient care but as an additional
outcome measure in the clinical trials of disease-modifying
treatments. A significant advantage of a sensor-based approach
is that a linear regression model could provide a much higher
resolution than current UPDRS assessment. Apart from this
advantage, a sensor-based assessment also shows potential to link
objective tremor and bradykinesia assessment to dopaminergic
replacement therapy (DRT) dosage directly. In this sense, a
more accurately adjusted dose might help maximize the period
in which DRT is effective as dosage needs to be subsequently
increased and OFF periods become longer.

Nevertheless, a substantial number of additional studies in
several domains are required. Future research should focus on

including more than one clinician rating, as well as procedure
standardization. Once pilot trials achieve UPDRS classification
predictions that fall within the inter-rater range, designing
expert systems that offer a much finer resolution of tremor and
bradykinesia should become feasible.
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