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Objective:Delirium is associated with worse outcomes in patients with stroke and

neurocritical illness, but delirium detection in these patients can be challenging

with existing screening tools. To address this gap, we aimed to develop and

evaluate machine learning models that detect episodes of post-stroke delirium

based on data from wearable activity monitors in conjunction with stroke-related

clinical features.

Design: Prospective observational cohort study.

Setting: Neurocritical Care and Stroke Units at an academic medical center.

Patients: We recruited 39 patients with moderate-to-severe acute intracerebral

hemorrhage (ICH) and hemiparesis over a 1-year period [mean (SD) age 71.3

(12.20), 54% male, median (IQR) initial NIH Stroke Scale 14.5 (6), median (IQR) ICH

score 2 (1)].

Measurements and main results: Each patient received daily assessments for

delirium by an attending neurologist, while activity data were recorded throughout

each patient’s hospitalization using wrist-worn actigraph devices (on both paretic

and non-paretic arms). We compared the predictive accuracy of Random Forest,

SVM and XGBoost machine learning methods in classifying daily delirium status

using clinical information alone and combined with actigraph data. Among our

study cohort, 85% of patients (n= 33) had at least one delirium episode, while 71%

of monitoring days (n= 209) were rated as days with delirium. Clinical information

alone had a low accuracy in detecting delirium on a day-to-day basis [accuracy

mean (SD) 62% (18%), F1 score mean (SD) 50% (17%)]. Prediction performance

improved significantly (p < 0.001) with the addition of actigraph data [accuracy

mean (SD) 74% (10%), F1 score 65% (10%)]. Among actigraphy features, night-time

actigraph data were especially relevant for classification accuracy.

Conclusions: We found that actigraphy in conjunction with machine learning

models improves clinical detection of delirium in patients with stroke, thus paving

the way to make actigraph-assisted predictions clinically actionable.
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1. Introduction

Delirium occurs frequently in critically ill patients and has

consistently been associated with higher mortality and worse

overall outcomes (1). However, the diagnosis and detection of

delirium remains challenging in many patient populations, as

existing screening tools are unreliable in patients with stroke

(2), neurocritical illness (3), and dementia (4). Further, because

the diagnosis and detection of delirium relies on bedside testing,

identifying at-risk patients across all hospital settings is highly

labor intensive. Automated methods of delirium screening would

therefore fill a critical need in the care of patients whose

delirium may otherwise go undetected due to superimposed

neurologic deficits, and potentially for critically ill patients as

a whole.

We have previously described fluctuations of consciousness

as a potential behavioral biomarker that corresponds to delirium

in patients with stroke while also potentially identifying cases of

delirium that went undetected by conventional screening tools (5).

Additionally, we have found that these fluctuationsmay correspond

to long-term outcomes in a subset of patients with hemorrhagic

stroke (6). However, determining levels of consciousness still

depends on frequent bedside assessments and may therefore be

prohibitive. Given that motor activity is often heavily factored into

clinical measurements of consciousness (7), and that psychomotor

changes are a hallmark of delirium (8), continuous measurements

of motor activity may represent a promising behavioral biomarker

to aid in delirium detection.

Various devices for measuring motor activity exist, though

wearable sensors such as wrist actigraphs are especially appealing

due to their ease of use and relatively low cost. Such devices are

commonly used in outpatient sleep medicine settings (9), and

have increasingly been utilized in studies attempting to measure

physical activity (10) and sleep (11) in the intensive care unit

(ICU). However, actigraphy in ICU settings may be contaminated

by externally mediated activity arising from clinical care. As a

result, although wrist actigraphs have also been considered as a

potential means of predicting delirium, existing studies have thus

far shownmixed results using conventional statistical methods (12–

14).

In this study, we aimed to mitigate some of this externally

mediated artifact by collecting actigraphy data from a cohort of

critically ill patients with hemiparesis due to acute intracerebral

hemorrhage (ICH). Owing tomarked differences in activity profiles

between paretic and non-paretic sides, we aimed to leverage

actigraphy data from both wrists as a within-patient control.

Further, the heterogeneous nature of individual activity profiles

and delirium cases lends itself to advanced analysis using machine

learning-based techniques. We therefore designed this study to test

the feasibility of this novel approach.

2. Materials and methods

2.1. Study population

We prospectively screened all patients admitted to Rhode

Island Hospital’s Neurocritical Care Unit (NCCU) or Stroke Unit

(SU) with acute intracerebral hemorrhage (ICH) over a 1-year

period from 2018 to 2019 for potential enrollment. We included

patients with moderate-to-severe supratentorial ICH [National

Institutes of Health (NIH) stroke scale ≥ 5] and hemiparesis,

specifically focusing on supratentorial ICH because of the higher

likelihood of cognitive symptoms occurring in conjunction

with motor symptoms as compared to patients with brainstem

or cerebellar hematomas. We excluded patients with previous

limb amputation or significant pre-morbid functional disability

requiring assistance with their daily activities (as assessed using the

modified Rankin Scale), as well as patients with devastating strokes

considered to have a high likelihood of mortality. All patients were

enrolled within 72 h of admission.

2.2. Delirium assessments

Daily delirium assessments were performed each afternoon

by an attending neurocritical care or behavioral neurologist,

with the exception of weekends and holidays. Delirium was

diagnosed according to Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition (DSM-5) criteria (15): disturbances

in attention and awareness (often accompanied by disturbances

in other cognitive domains, such as psychomotor slowing or

agitation, disorientation, disorganized thinking, impaired executive

function, or perceptual disturbance) that develop over a short

period of time and tend to fluctuate, represent a change in

function, and are due to an underlying medical condition

or toxic/withdrawal syndrome. Assessments were supplemented

by interviews and history obtained from patients’ nurses and

clinical providers, family members, and the medical chart.

Joint adjudication sessions were held between the participating

neurologists to obtain consensus on delirium diagnoses for

each patient.

2.3. Actigraph data collection

Wrist actigraphs (Micro Motionlogger, Ambulatory

Monitoring, Inc., Ardsley, NY) were placed on both wrists

for each patient and left in place for the duration of their stay in

the NCCU or SU. Actigraphs were otherwise only purposefully

removed in anticipation of magnetic resonance imaging scans as a

safety precaution and were then replaced thereafter.

Each actigraph was configured to collect activity data in 1-

min epochs. These data were then aggregated by proprietary

algorithms from the Action4 software package (Ambulatory

Monitoring, Inc.) into two distinct measurements: Zero Crossing

Mode (ZCM), which measures the frequency of movement by

counting the number of times per epoch that the signal crosses a

threshold set near zero; and Proportional Integration Mode (PIM),

which calculates the area under the curve for the acceleration

signal during each epoch, and therefore discriminates between

different intensities ofmotion. Data were subsequently downloaded

using the Action W-2 software package (Ambulatory Monitoring,

Inc.). A sample of a patient’s actigraph data is provided in

Supplementary material 1.
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2.4. Additional clinical data

All data related to standard clinical stroke care were

prospectively collected in a REDCap database (Vanderbilt

University, Nashville, TN) (16, 17). These data included patient

demographics, comorbidities, admission NIH Stroke Scale

(NIHSS) score, neuroimaging, and other diagnostic testing. ICH-

related clinical predictors, including hematoma location, size, and

ICH score were adjudicated by two attending neurologists with

board certification in neurocritical care and/or vascular neurology

until consensus was achieved.

2.5. Data analysis

The task of recognizing episodes of delirium was delineated

as a supervised machine learning problem: Given a set of

features X derived from patient data, predict delirium status as

the dependent outcome variable Y. Because delirium status was

measured on a 24-h basis, patient data were preprocessed such

that individual features were aggregated into a day-level unit

of analysis.

2.6. Actigraph data pre-processing

Raw data for each patient consisted of two parts: raw

actigraph measurements, which had minute-to-minute variability,

and clinical data, which remained relatively static over the course

of each patient’s hospitalization (in the case of demographic

and stroke-specific data) or over the course of a day (in the

case of mechanical ventilation status). Actigraph data for a

given 24-h block were partitioned into four groups: full-day (1

to 1 P.M.), morning (6A.M. to 1 P.M.), afternoon/evening (1

to 10 P.M.), and night-time (10 P.M. to 6A.M.) epochs. Pre-

processing also included normalization of actigraph data prior

to classification.

2.7. Actigraph feature extraction

We then aimed to extract clinically meaningful information

from the actigraph data to include as features in our delirium

prediction models. Figure 1 summarizes the feature extraction

process, which culminated in our calculation of two key features

from the actigraph data: minutes at rest and within-patient

dynamic time warping (DTW).

We defined minutes at rest as the daily proportion of PIM

measurements equal to zero in both paretic and non-paretic arms.

This feature was chosen due to the importance of psychomotor

slowing and inactivity in the diagnosis of delirium (18). It may also

provide a helpful estimate of sleep-wake disturbance, a common

symptom of delirium (18), though actigraphy likely overestimates

actual sleep time in hospital and ICU settings (10).

We also implemented a within-patient control feature

calculated as the minimal Euclidean distance of actigraph data

with DTW (19). DTW offers a measure of similarity between

two temporal sequences that vary in speed. We hypothesized that

warping the actigraph signal would facilitate direct comparison

of movements caused by routines occurring at regular intervals

(e.g., nursing assessments and nursing care), but not necessarily

at identical intervals each time, which would address intra-patient

variability in our dataset. A higher Euclidean distance suggests a

larger difference between the signal in question and the reference.

Figure 2 depicts a DTW example.

We considered two separate within-patient control references:

using the non-paretic arm as reference, and using the paretic arm in

the first day labeled as non-delirious as reference. For consistently

delirious patients without non-delirious days, we used the first

day of data instead. Our rationale for using within-patient control

references is that a patient would serve as their own best baseline

to measure changes in movement, and that assessing movement in

both arms could function as a surrogate for whole body movement.

For instance, increased movement in both paretic and non-paretic

arms would suggest externally mediated whole-body movement

(e.g., for nursing care), while increased movement in only the

non-paretic arm would be more suggestive of patient-initiated

limb movement.

2.8. Clinical features

Finally, we included relevant demographics and stroke-specific

clinical features in our delirium prediction models. These variables

included age, sex, NIHSS scores, and ICH features including

hematoma volume, location, and presence of intraventricular

hemorrhage, many of which have been described as risk factors

for post-stroke delirium in prior studies (20, 21). In addition, we

included day-to-day mechanical ventilation status as a dynamic

variable in our models, as this was presumed to affect the amount

of patient movement (e.g., from sedation).

2.9. Train/test split

To account for limited data set size and high variance among

enrolled patients’ measurements, we used 500 bootstrapping

iterations. During each iteration, data were split into non-

overlapping training (80% of patients) and test sets (20% of

patients), ensuring that no individual patient’s observations were

included in both the training and test set. Model training and

evaluation were separately performed for each of these 500

random train/test splits. Means and standard deviations across

the bootstrapping iterations were reported for metrics including

accuracy, balanced accuracy, Receive Operating Characteristic Area

Under the Curve (ROC-AUC), and F1-score.

2.10. Machine learning models

A number of alternative machine learning models were

trained based on the previously described feature vectors. These

included Random Forests, Support Vector Machines (SVM), and

Extreme Gradient Boosting (XGBoost). Several filtering techniques

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2023.1135472
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ahmed et al. 10.3389/fneur.2023.1135472

FIGURE 1

Feature extraction and classification process. Elements in parentheses were initially explored but ultimately discarded because they did not

contribute to higher prediction accuracy.

FIGURE 2

Dynamic time warping (DTW) example. Original (left) and minimal Euclidean distance warped (right) signals of 2 h of actigraph data.

were also explore to address the potential impact of patient

intervariability, including bandpass and Savitzky-Golay filtering.

However, we found no filteringmethod that improved performance

and thus proceeded without any further data preprocessing. We

provide the best results obtained by these algorithms, achieved

using XGBoost with the following hyperparameters, all of which

were tuned via cross-validation on the training set: learning

rate 0.03, maximum tree depth 5, minimum child weight 1,

subsample fraction 0.8, and column fraction 0.8. Models were

trained to detect whether a patient had been delirious at any

time during a 24-h period using different subsets of data sources:

(1) clinical data only, (2) clinical and actigraph data using the

non-paretic arm as reference, and (3) clinical and actigraph

data using the first non-delirious day of the paretic arm as

reference. We trained our models on a computer with an Intel

8700K CPU and 64 GB of RAM. Using this system, data

preparation took ∼10min, and model training and testing took

1–2 min.
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3. Results

3.1. Patient characteristics

A total of 40 patients who met eligibility criteria were

recruited for this study. A patient flow diagram is provided

in Supplementary material 1. To ensure model consistency, we

discarded partial actigraph data from the day of enrollment, which

also removed the substantial artifact associated with actigraph

setup. This led to the exclusion of one patient who was enrolled

and discharged prior to recording a full day of actigraph data.

As a result, our final cohort comprised 39 patients with a total

of 296 days of actigraph monitoring (see Table 1 for baseline

characteristics). Among this cohort, 85% of patients (n = 33) had

delirium at some point during their hospitalization, including 15

patients who had delirium for the entire duration of monitoring,

TABLE 1 Baseline characteristics and delirium features for patients with

intracerebral hemorrhage (ICH) enrolled in this study.

Demographics

Age, years, mean (SD) 71.4 (12.2)

Male, n (%) 21 (53.9%)

White, n (%) 38 (97.5%)

ICH characteristics

Admission NIHSS score, median (IQR) 14.5 (6)

ICH score, median (IQR) 2 (1)

ICH volume, cc, mean (SD) 38.4 (24.1)

Intraventricular hemorrhage, n (%) 21 (53.9%)

Location, n (%)a

Lobar 26 (66.7%)

Deep 14 (38.5%)

Mechanically ventilated, n (%) 8 (20.5%)

Ever delirious, n (%) 33 (84.6%)

Always delirious, n (%) 15 (38.5%)

Number of data collection days, median (IQR) 5 (9)

Delirium days, median (IQR) 3 (6)

aOne patient presented with both lobar and deep ICH.

while 15% of patients (n= 6) never had delirium; 71% (n= 209) of

all monitoring days represented days with delirium.

3.2. Delirium detection

Clinical data alone had low accuracy in detecting delirium on a

day-to-day basis (Table 2). However, the addition of actigraph data

yielded a significant improvement in accuracy (p < 0.001), with

the highest recognition performance reaching an accuracy score of

74%. Using the first non-delirious day as DTW reference resulted

in better accuracy than using the non-paretic arm as reference.

In a post-hoc analysis, we attempted to further filter activity that

was presumed to be externally mediated (e.g., from nursing care) by

removing certain actigraph data outliers. We defined these outliers

as PIM values from the paretic arm that were 10 or more standard

deviations higher than themedian paretic arm PIM value. However,

this procedure did not improve accuracy (accuracy 0.74, balanced

accuracy 0.68, F1 0.65, ROC AUC 0.68).

We were also interested in determining which individual

features most contributed to model accuracy. This was done

by analyzing each feature and the associated information gain

it produced, averaged across each run of cross validation.

This analysis suggests that night-time DTW actigraph data was

an especially important feature, with minutes at rest during

afternoon/evening and night-time periods also meaningfully

contributing to prediction power (Figure 3).

4. Discussion

We found that detecting delirium using actigraphy and

machine learning-based analysis was feasible and provided valuable

information that significantly improved upon the accuracy of

clinical data alone. Given the increasingly recognized impact

of delirium on patients with stroke, with consequences ranging

from withdrawal of life-sustaining treatment to decreased rates of

rehabilitation utilization (22), the early and accurate recognition

of delirium in these patients is paramount. Because existing

delirium screening tools are unreliable in the setting of severe

neurologic deficits, novel tools are needed in the clinical setting,

and unconventional methods such as actigraph monitoring may be

a promising way to address this gap (21).

TABLE 2 Model performance for same-day delirium detection.

Data Balanced accuracy Accuracy F1 ROC AUC

Clinical only 0.56± 0.14 0.62± 0.18 0.5± 0.17 0.56± 0.14

Clinical+minutes at rest 0.61± 0.1 0.69± 0.1 0.58± 0.11 0.61± 0.1

Clinical+ non-paretic arm DTW 0.57± 0.1 0.63± 0.11 0.53± 0.11 0.57± 0.1

Clinical+ non-paretic arm DTW+minutes at rest 0.63± 0.1 0.71± 0.1 0.61± 0.1 0.63± 0.1

Clinical+ reference day DTW 0.66± 0.12 0.68± 0.12 0.61± 0.12 0.66± 0.12

Clinical+ reference day DTW+Minutes at rest 0.65± 0.11 0.71± 0.11 0.62± 0.11 0.65± 0.11

Clinical+ non-paretic arm DTW+ reference day DTW+minutes at rest 0.68 ± 0.11 0.74 ± 0.1 0.65 ± 0.1 0.68 ± 0.11

Best performing method bolded.
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FIGURE 3

Individual feature importance for the final model according to

XGBoost.

The use of machine learning with actigraphy data has been

previously implemented for sleep-wake detection with encouraging

results (23–26), and methods using XGBoost have shown superior

performance in classifying actigraph data (24). However, to the best

of our knowledge, this is the first study that uses machine learning

in combination with actigraphy data to assess delirium status in any

patient population.

Theoretically, our study may also have relevance for non-

neurologic patients (12, 27), though additional considerations

would be required for patients with greater mobility. Although

validated delirium screening tools exist in general critical care

and hospitalized populations, they can be resource intensive

and demand that nurses and other providers be appropriately

trained in their use. Automated methods of delirium monitoring

could therefore help offset the burden of a strained healthcare

staff, especially methods that help monitor for fluctuations in

activity and arousal that are characteristic of delirium. Additionally,

adjunctive methods of delirium monitoring may also improve

overall detection rates in other challenging patient populations,

such as those with dementia.

Monitoring patients at night may be especially important in

detecting delirium, a concept that is underscored by the significant

contribution of night-time actigraph data to the accuracy of

our delirium prediction models. Although the high incidence of

nocturnal symptoms and sleep-wake disturbances associated with

delirium is well known, these symptoms may often go undetected

until they reach a point where they become obvious (i.e., severe

agitation). It is possible that nocturnal symptoms could be detected

sooner via frequent clinical assessments, which are the basis of

neurological monitoring in neurocritically ill patients. However,

there is increasing controversy regarding the optimal frequency of

neuro checks, and it has been hypothesized that overly frequent

neurological exams at night may contribute to delirium by leading

to sleep fragmentation and overstimulation (28). On the other

hand, the relatively unobtrusive nature of wearable sensors may

provide valuable complementary information that could help

detect delirium during especially high-risk time periods.

Our study is notable for its innovative techniques, including

the use of machine-learning to analyze actigraph data and the

use of within-patient controls via actigraphs worn on both

paretic and non-paretic limbs. However, the study does have

several limitations. First, actigraph data are limited by noise

and artifacts caused by external movements such as nurse

or provider-initiated movements (e.g., during repositioning or

clinical examination). Although we excluded artifactual data

associated with actigraph initiation from the day of admission

and incorporated measurements from both paretic and non-paretic

limbs to mitigate potential confounding, we could not definitively

filter these externally-mediated movements further. However, their

influence may have been relatively modest, as a post-hoc analysis

using an outlier filtering method did not result in a meaningful

difference in accuracy. Second, because we assessed delirium status

only once per day, we may have missed shorter periods of delirium

or non-delirium that would have allowed for closer correlation with

actigraph data. Finally, our sample size was relatively small and

had a class imbalance in favor of delirium-positive days, as many

patients were rated as either always (or almost always) delirious or

never delirious. Because deep learning requires that voluminous

amounts of data be available for optimal results, future studies

are needed to analyze data from larger cohorts of patients and

further evaluate machine learning-based methods for detecting and

predicting delirium. The methods described in this manuscript,

paired with a larger dataset, may provide a resulting model that

generalizes better and shows less variability in its output metrics.

5. Conclusions

We found that actigraphy in conjunction with machine

learning models improves clinical detection of delirium in patients

with stroke, thus paving the way to make actigraph-assisted

predictions clinically actionable.
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