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ABSTRACT

The extent to which text-only language models (LMs) learn to represent the physi-
cal, non-linguistic world is an open question. Prior work has shown that pretrained
LMs can be taught to “understand” visual inputs when the models’ parameters are
updated on image captioning tasks. We test a stronger hypothesis: that the con-
ceptual representations learned by text-only models are functionally equivalent
(up to a linear transformation) to those learned by models trained on vision tasks.
Specifically, we show that the image representations from vision models can be
transferred as continuous prompts to frozen LMs by training only a single linear
projection. Using these to prompt the LM achieves competitive performance on
captioning and visual question answering tasks compared to models that tune both
the image encoder and text decoder (such as the MAGMA model). We compare
three image encoders with increasing amounts of linguistic supervision seen dur-
ing pretraining: BEIT (no linguistic information), NF-ResNET (lexical category
information), and CLIP (full natural language descriptions). We find that all three
encoders perform equally well at transferring visual property information to the
language model (e.g., whether an animal is large or small), but that image encoders
pretrained with linguistic supervision more saliently encode category information
(e.g., distinguishing hippo vs. elephant) and thus perform significantly better on
benchmark language-and-vision tasks. Our results indicate that LMs encode con-
ceptual information structurally similarly to vision-based models, even those that
are solely trained on images.

1 INTRODUCTION

Much recent work in NLP has revolved around studying the limits on representational capacity in-
curred by training on form-only text data, as discussed in Bender & Koller (2020). Tied to this
argument is the idea that without explicit grounding, language models are not inclined to learn con-
ceptual representations of language that reflect the rich conceptual knowledge that humans gain from
interacting with the physical, non-linguistic world. Despite this, there have been remarkable find-
ings in large language models’ abilities to generalize to and reason about non-linguistic phenomena
(Tsimpoukelli et al., 2021; Eichenberg et al., 2021; Li et al., 2021; Patel & Pavlick, 2022). Thus,
an open question in the field is to what extent (if at all) a language model trained on text-only data
can be a model of the world. In this paper, we test a specific hypothesis about the relationship be-
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Figure 1: We train linear projections from image representations into the input space of a language
model to produce captions describing images. We find that LMs can describe the contents of most
image representations, but performance varies based on the type of image encoder used.

tween language model and image encoder representations: that these conceptual representations are
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functionally equivalent (up to a linear transformation). To do this, we train a single linear layer to
project from the representation space of images into the language space of a generative LM without
tuning any other model parameters, which we call LiMBeR: Linearly Mapping Between Represen-
tation spaces. That is, we linearly transform an image representation into “soft prompts”–vector(s)
in the embedding space that do not correspond to discrete language tokens (Lester et al., 2021). The
weights of this linear projection are tuned for an image captioning task (illustrated in Figure 1).
We can then evaluate its performance on ‘understanding’ different kinds of images at test time by
exploring the text the LM generates. Because a linear projection is a distance-preserving transforma-
tion, we would expect that if the conceptual representation spaces of the two models are structured
similarly, this transfer will be successful and the LM will have little trouble describing the contents
of images.

We use three different image encoders with increasing levels of linguistic supervision in pretraining:
BEIT (Bao et al., 2021), Normalizer Free Resnet50 (NFRN50) (Brock et al., 2021), and CLIP (Rad-
ford et al., 2021) to train different projections into the LM. By linguistic supervision, we refer to the
extent to which the image encoder was exposed to language data during its pretraining, thus influ-
encing the expected representational similarity between it and an LM. While CLIP was pretrained to
align images with full natural language captions in a shared image-text representation space, BEIT
had no exposure to language and was trained by predicting the contents of masked out sections of
images. NFRN50 falls somewhere between these extremes: having been pretrained on an image
classification task for identifying the subject of an image over the set of classes in ImageNet1k Rus-
sakovsky et al. (2015). Although there is no natural language in this task, the pretraining objective
encourages the model to map visual features along lexical categorical concepts (the image classes)
derived from the WordNet hierarchy (Miller, 1995).

We show that prompting an LM with any of the three image encoders effectively transfers semantic
content in the image that the LM describes with natural language. However, performance also
appears proportional to the strength of the linguistic supervision the image encoder had. While CLIP
and NFRN50 perform competitively with tuning the models freely (e.g., Tsimpoukelli et al. (2021),
Eichenberg et al. (2021)), BEIT appears to transfer mostly coarse-grained visual properties and
struggles with encouraging the LM to generate exact lexical categories. We interpret this as evidence
that LMs learn conceptual spaces that are structurally very similar to those learned by models trained
directly on image data, but that the exact degree of similarity depends on the type of supervision the
image encoder receives. In summary, we show: (1) that visual semantic information can be linearly
mapped to language models in the form of soft prompts without tuning any model parameters.
(2) That this mapping allows generative models to describe images and answer questions about
images at a level that is comparable to what is achieved by multimodal models which tune image
and language representations jointly. And (3) by training our prompting pipeline with different
image encoder backbones, we demonstrate that linguistic supervision in pretraining plays a key role
in concept formation in models and thus, the transferability of visual features from vision to text
spaces.

2 RELATED WORK

Our approach takes inspiration from recent work in adapting pretrained language models for accept-
ing representations of images as inputs. Particularly, the Frozen and MAGMA models (Tsimpoukelli
et al., 2021; Eichenberg et al., 2021), as well as Sung et al. (2022); Alayrac et al. (2022); Mokady
et al. (2021); Luo et al. (2022), which show that pretrained image and text networks can be tuned
together on an image captioning task and applied to downstream vision-language (VL) tasks. These
approaches either fine-tune the pretrained models, or train non-linear MLP projection/fusion net-
works between modalities, making interpretation of the representations difficult compared to our
approach. Pretrained/from scratch LMs have typically been used in the past for image captioning
applications in which an image representation is fed into the LM as input (Desai & Johnson, 2021;
Shen et al., 2021; Devlin et al., 2015). Gui et al. (2022); Yuan et al. pretrain vision-language models
from scratch using image-caption data. The success of aforementioned models on VL tasks indi-
cates there is a representational similarity learned by text and image models independently, which
we investigate in this paper.
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Our work is also highly related to the idea of model “stitching” (Lenc & Vedaldi, 2015) in which two
different models are attached at a certain layer. LiMBeR can be described as stitching the output of
an image encoder to the input of an LM in the form of soft prompts (Lester et al., 2021). Stitching
offers distinct advantages in evaluating the representational similarity between two models, as de-
scribed in Bansal et al. (2021), over other conventional methods like RSA and CKA (Kriegeskorte
et al., 2008; Kornblith et al., 2019). For example, LiMBeR allows us to show not just that CLIP en-
codings are more similar to text encodings than BEIT representations, but that BEIT representations
are nevertheless equivalently able to transfer visual property information to the LM (§5.3).

There has been considerable interest in recent work in establishing if LMs model aspects of the
non-linguistic world in order to model language, i.e. learn a ‘world model’. Lu et al. (2021) show
that the weights of a pretrained LM can generalize to tasks with different modalities and argue
that LMs may become useful as “universal computation engines” which can learn non-language
tasks. Li et al. (2021) show that models of entities and situations can be derived from contextual
word representations. Patel & Pavlick (2022) show that very large LMs (GPT-3 scale (Brown et al.,
2020)) can learn in-context non-linguistic conceptual domains depicted in text. Our work differs
from these in that we have an LM interface directly with non-text data without changing model
weights and show that, although fundamentally different, the representation space of a text-only LM
shares non-trivial similarities to that of several vision-based models.

3 METHOD: LINEARLY MAPPING FROM IMAGE TO TEXT REPRESENTATIONS

While previous work has shown success in mapping images to language model soft prompts as
a method for multimodal pretraining (e.g., Frozen, Magma; see Section 2), there have been no
attempts to restrict the mechanism behind this mapping and understand how it works. Our basic
approach is to train a single linear layer P to project from the hidden size hI of a pretrained image
encoder into the input space eL of a generative language model for an image captioning task. The
projected inputs do not correspond to discrete language tokens, and can be thought of as soft prompts
(Lester et al., 2021) representing the image. For brevity, we refer to training P as Linearly Mapping
Between Representation spaces (i.e., LiMBeR)1. Our approach can also be viewed as paring down
the method used in Tsimpoukelli et al. (2021) and Eichenberg et al. (2021), such that the only trained
parameters reside in the projection P . By freezing the image encoder E and LM on either side of
the projection, we can examine the similarities between the representation spaces of the two as a
function of the ability of the LM to describe an image input or perform some task relating to it. We
expect that, if a language model represents visual conceptual information structurally similarly to
that learned by a vision encoder, then a simple distance-preserving transformation to the language
space is all that is required to transfer visual features into the language model. Before describing
the training procedure, we will describe the basic components of the model, and the variations we
chose.

Language Model LM & Image Encoders E We hypothesize that the conceptual representations
learned by an LM are equivalent, up to a linear transformation, to the representations from an image
encoder E. The language model used is the 6 billion parameter decoder-only GPT-J model (Wang
& Komatsuzaki, 2021). P is trained to project from hI to the input space eL = 4096 of the LM.
We train several models with different E’s to determine the compatibility between encodings from
E and the LM. We also test how the choice of E influences performance on this task, specifically,
with regards to the degree of linguistic supervision E saw in pretraining, as described in Section 1.

From E we extract an image encoding of dimensionality hI representing the image. We then project
that encoding to a eL ∗ k sequence of soft prompts, which we hereafter refer to as image prompts.
k is determined by the architecture of the E. For example, for consistency with the MAGMA
model, we use the 12x12x3072d feature map before pooling from CLIP, which we flatten to k =
12 ∗ 12 = 144. The encoders we experiment with are (1) CLIP RN50x16 (Radford et al., 2021),
k = 144, hI = 3072. Because CLIP is trained to learn multimodal image-text embeddings, we
expect that it will be easier for the model to learn a projection into language space than a vision only
encoder. (2) NFRN50 (Brock et al., 2021), k = 2, hI = 2048. We train three variants using NF-

1We avoid specifying images or text in our backronym because one could linearly map between any two
representation spaces of any modalities (e.g. video-to-text or text-to-text)

3



Pre-print

Resnet50: one pretrained and frozen during caption training (NFRN50), one tuned during caption
training (NFRN50 Tuned; note that the LM is still frozen), and one randomly initialized (NFRN50
Random). The NFRN50 models are pretrained on an image classification task on data that is labeled
according to WordNet hypo/hypernym structure. This signal trains the model to separate object
classes according to these words. For this reason, we consider it to have indirect access to linguistic
supervision. (3) BEIT-Large (Bao et al., 2021), k = 196, hI = 1024. BEIT is pretrained using
a self-supervised masked visual token modeling task and does not have access to any labeled data
which may give the model an inductive bias towards a linguistic structure. We use the 16-pixel patch
version that was pretrained only on ImageNet22k.

3.1 TRAINING PROCEDURE

Following the MAGMA and Frozen models (Eichenberg et al., 2021; Tsimpoukelli et al., 2021),
we train a projection on an image captioning task so that we can learn to align the representation
spaces of E and the LM. All models are trained with the same basic hyperparameters and settings
as described in the MAGMA paper (see Appendix A for details) on the Conceptual Captions 3M
dataset (CC3M, Sharma et al. (2018)) for 15,000 training steps.

Baselines As baselines, we use NFRN50 Random, NFRN50 Tuned, and train our own instance of
MAGMAbase. Please note that NFRN50 Tuned is a stand-in for the Frozen model: it is architec-
turally the same, but differs in that we use the hyperparameters used to train the MAGMA model.
NFRN50 Random allows us to test the efficacy of LiMBeR when the image encoder backbone has
not learned any useful visual features. The MAGMA we train uses the CLIP RN50x16 image en-
coder (Radford et al., 2021), GPT-J as the LM, and adapters in sequence in the attention blocks with
a downsample factor of 4.

3.2 LIMITATIONS

LiMBeR allows us to compare the representation spaces of two models of different modalities with-
out changing either model’s parameters and behaviors, but is not free from all confounding variables.
Due to computational constraints, we did not control for the prompt length (k) for each image en-
coder. Tsimpoukelli et al. (2021) experiment with the value of k for the Frozen model and show
that while there are some differences, k is mostly a factor in hyperparameter tuning and should not
strongly affect the comparison between models.

We consider LM runoff another potential confound. In some cases, if the LM recognizes and gen-
erates a relevant word for one concept (e.g., “the beach”), it might continue generating relevant
information due to a strong linguistic prior for that info showing up (e.g., “building a sandcastle”),
giving the illusion it is recognizing every element in an image (even if it never saw “the sandcastle”).
Regardless, the scope of this problem is very limited, and across multiple large datasets our results
show that recovery of any image information is still possible, even if the full and precise extent of
which is impossible to know. We also include a ‘blind’ model in visual question answering analysis
to further control for this.

4 PERFORMANCE ON VISION-LANGUAGE TASKS

We first verify that image representations that are linearly projected into the input space of the LM
carry semantic information about the content of the image that the LM can make sense of. Since we
only tune a single projection between the image encoder and text decoder, the prompt tokens in the
LM are equivalent to the image representation up to that linear transformation. If LMs are learning a
conceptual space that reflects that of the non-linguistic, purely visually grounded space of the image
encoder, the LM should be able to capture the image information and describe it in text.

Data We evaluate on image prompts generated by each image encoder on multiple image cap-
tioning datasets: MSCOCO (Lin et al., 2014) and NoCaps (Agrawal et al., 2019), as well as the
VQA2 (Goyal et al., 2017) visual question-answering dataset. Following convention from SimVLM
and MAGMA, we input the prefix “A picture of” after every image to prompt the model. Like in
previous work, we find that this is a favorable prompt which tends to increase performance.
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Q:   What is the person doing? 
A: surfing

CLIP He is surfing a wave.

NFRN50 He is surfing the waves.

BEIT He is jumping into the 
water.

NFRN50 
Random

He is swimming in the 
pool.

Q:  What is the person holding? 
A: tennis racket

CLIP A tennis racket

NFRN50 A tennis racket

BEIT A baseball bat.

NFRN50 
Random A tree

CLIP a giraffe in the lobby

of the building

NFRN50 the giraffe in the zoo.

BEIT a peacock in the garden

NFRN50 
Random

a man and a woman in a 
field of flowers


CLIP tennis player in action

NFRN50 tennis player at the tennis 
tournament.

BEIT tennis player during a 
tennis match.


NFRN50 
Random the new logo for the team

Visual Question Answering

Image Captioning

Figure 2: Curated examples of captioning and zero-shot VQA illustrating the ability of each model to
transfer information to the LM without tuning either model. We use these examples to also illustrate
common failure modes for BEIT prompts of sometimes generating incorrect but conceptually related
captions/answers.

Image Captioning NoCaps - CIDEr-D NoCaps (All) CoCo CoCo
In Out Near All CLIP-S Ref-S CIDEr-D CLIP-S Ref-S

NFRN50 Tuned 20.9 30.8 25.3 27.3 66.5 72.5 35.3 69.7 74.8
MAGMA (released) 18.0 12.7 18.4 16.9 63.2 68.8 52.1 76.7 79.4

MAGMA (ours) 30.4 43.4 36.7 38.7 74.3 78.7 47.5 75.3 79.6
NFRN50 Random 5.4 4.0 4.9 5.0 47.5 55.7 4.8 49.5 57.1

BEIT 20.3 16.3 18.9 18.9 62.0 69.1 22.3 63.6 70.0
NFRN50 21.3 31.2 26.9 28.5 65.6 71.8 36.2 68.9 74.1

CLIP 34.3 48.4 41.6 43.9 74.7 79.4 54.9 76.2 80.4

VQA n-shots 0 1 2 4
Blind 20.60 35.11 36.17 36.99

NFRN50 Tuned 27.15 37.47 38.48 39.18
MAGMA (ours) 24.62 39.27 40.58 41.51

MAGMA (reported) 32.7 40.2 42.5 43.8
NFRN50 Random 25.34 36.15 36.79 37.43

BEIT 24.92 34.35 34.70 31.72
NFRN50 27.63 37.51 38.58 39.17

CLIP 33.33 39.93 40.82 40.34

Table 1: Captioning Performance and Visual Question Answering (VQA) accuracy for all variations
on model architecture and image encoders used. On captioning, we see a consistent increasing trend
in performance that correlates with an increase in linguistic supervision. However BEIT (the only
vision-only model), performs far above a randomly initialized NFRN50 model and is on par with
the other models on CLIPScore (CLIP-S) and RefCLIP Score (Ref-S) (Hessel et al., 2021). We see
that BEIT perform at the level of our random baselines on VQA, suggesting there is a deficiency in
relating visual information to more complex visual-linguistic reasoning tasks
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Figure 3: On average, recall of nouns in generated captions follows the standard pattern
(CLIP¿NFRN50¿BEIT). However, judging by Wu-Palmer similarity, BEIT performs nearly the
same or better than NFRN50 and CLIP on 4/5 of the noun categories. This indicates that although
BEIT struggles to transfer the exact correct concept, it is transferring a related one based on visual
similarity. On the right we show this effect for individual vehicle words. BEIT may have never
learned to distinguish the ‘bus’ concept, but the LM still understands to generate a highly related
concept, i.e., another vehicle. Average random Wu-Palmer similarity is around .4 consistently.

Metrics For image captioning, we report CIDEr-D (Vedantam et al., 2015), CLIPScore, and Ref-
CLIPScore (Hessel et al., 2021). CIDEr-D rewards generating accurate words which are more likely
to be visually informative, and CLIPScore can evaluate similarity between an image and caption
without references, which helps us give credit for captions that vary greatly from the ground truth,
but similar in semantic content (e.g. describing a pool as a lake). We report additional captioning
metrics in Appendix B. For visual question answering, we follow the few-shot procedure used in
Eichenberg et al. (2021) in which we prompt the models with the “[image] Q: [q] A:” format. We
take the first word of the generation and, like in the MAGMA paper, truncate to the length of the
longest ground truth answer. We also use the normalization procedure and accuracy metric described
in the VQA repo2

Results Our main results can be seen in Table 1. As evidenced by comparing MAGMA and CLIP,
and NFRN50 tuned and frozen, we find that there is relatively little benefit in training parameters in
either encoder or decoder. Note that the MAGMA model we implemented is identical to the frozen
CLIP model, with the exceptions that MAGMA tunes the image encoder and LM. On captioning and
VQA tasks, performance of the jointly-tuned models (MAGMA, NFRN50 Tuned) is not consistently
better, and is often worse, than just training the projection with frozen models. This trend persists
across over 10 automatic captioning metrics, which are described in Appendix B.

Notably, we find that even BEIT, which has no linguistic supervision in pretraining, still transfers
well to the LM for captioning, far outperforming random NFRN50 across the board, which had no
pretraining to learn visual features. We do find that BEIT captions using vaguer language, and/or
semantically related-but-incorrect descriptions of objects (Figure 2; more examples in Appendix B).
We see this reflected in the CLIPScores of the captions as well, which reward semantic similarity
rather than precise lexical overlap with a reference caption. BEIT captions score 62 and 63.6 for
NoCaps and COCO respectively; on average only 4.5 points behind NFRN50 but 14.3 ahead of
random NFRN50. Perhaps we see the greatest failure of BEIT prompts in the inability to transfer
details that the LM can use to answer questions about images (At 4-shot VQA, BEIT scores 31.72%
while a ‘blind’ LM with no image input scores 36.99%). We hypothesize this is because BEIT
representations do not encode visual information that corresponds well to lexical categories. In
Section 5, we provide evidence in favor of this hypothesis, and investigate the granularity of detail
prompts from each frozen encoder transfer to the LM.

5 TRANSFER OF VISUAL CONCEPTS

Examining the conditions that cause an image prompt to succeed or fail to transfer to the LM can help
us understand the differences between the text and image representation spaces. Doing so can also

2https://github.com/GT-Vision-Lab/VQA
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help us understand why BEIT prompts perform so poorly for VQA despite performing decently for
captioning. In Section 5.1, we analyze the ability to accurately generate specific lexical categories
in captions when they appear in images (e.g., mentioning “squirrel” when given a picture of one).
Following that, in Section 5.3 we focus on mistakes the models make: when the LM generates a
bad caption, does it generate a caption that describes entities with similar visual properties? For
example, a caption generated from an image of a “small”, “woodland”, and “furry” animal might
not mention the actual animal depicted (e.g., a squirrel); but does it instead mention a different
but similar furry animal (e.g., a rabbit)? We find that only linguistically informed image encoders
(NFRN50, CLIP) tend to strongly encode concepts aligning to lexical categories, but all pretrained
models including BEIT encode property information approximately equally well, and far better than
a randomly initialized image encoder baseline.

5.1 TRANSFER OF LEXICAL CATEGORICAL CONCEPTS

Using the COCO validation set, we count the top 50 nouns, modifiers (e.g., adjectives), and relations
(e.g., verbs, prepositional phrases) that appear in the ground truth captions and calculate how often
they appear in the generated captions that were used to calculate the scores in Table 1.

Metrics We calculate the precision/recall/F1 for each word, broken down along conceptual cate-
gories. To test our hypothesis that BEIT transfers coarser information, we also report the Wu-Palmer
similarity (Wup) (Wu & Palmer, 1994) between the ground truth word and the most similar word in
the generated caption. The Wup score works by calculating the distance between the ground truth
word and the generated word in the WordNet taxonomy, offering a way to measure ‘how close’ a
word was to the correct answer.

Results In Figure 3, we show that BEIT’s recall for nouns in categories like ‘people’, ‘environ-
ment’, ‘vehicles’, and ‘objects’ is lower than NFRN50 or CLIP, but is comparable in terms of Wup
similiarity in many categories. Unlike NFRN50 and CLIP’s pretraining, BEIT’s pretraining does not
encourage it to learn conceptual differences between two similar looking objects that use different
words. Compared to prompts from a randomly initialized NFRN50, for which very few consistent
patterns emerge, the LM can still extract the broad conceptual meaning behind BEIT prompts, as
evidenced by high Wup similarity (and CLIPScore results in Table 1). We interpret these results as
supporting the hypothesis that BEIT prompts transfer conceptual information from the purely visual
to purely text space, but only in terms of coarse-grained conceptual information corresponding to
visual properties, not lexical categories. Our full analysis, including additional metrics and results
for each individual word from the top 50 nouns, modifiers, and relations can be found in Appendix
B.

5.2 PROBING

To rule out the possibility that BEIT representations are encoding lexical concept information, but
are merely unable to linearly transfer it to the LM due to representational differences, we train linear
probes on several datasets for image classification. We find that BEIT typically does not encode fine-
grained information as well as NFRN50 or CLIP, though it far outperforms the randomly initialized
NFRN50 baseline. We discuss training details and results in Appendix E.

5.3 TRANSFER OF COARSE-GRAINED PERCEPTUAL CONCEPTS

To better understand what BEIT encodes, if not word category information, we further investigate
where errors arise, and how the structures of the embedding spaces for each frozen image encoder
differ. For the sake of this analysis, we constrain the task to generating captions for pictures of
animals. The reason for this narrower scope is that the captions are easier to analyze: the caption
describing a picture of an animal should virtually always mention the name of that animal, and the
word used to describe the animal is mostly unambiguous.

Data For this task we use the Animals With Attributes 2 (AWA) dataset (Xian et al., 2019) which
contains 37k total images covering 50 animal classes. Each animal class also comes with annota-
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(a) Left: Wu-Palmer Similarity for captions in which the models made mistakes show that BEIT, NFRN50,
and CLIP all similarly far off from the correct animal, meaning that even if they predict the wrong animal, it is
on average very taxonomically similar. Right: When the model mistakes one animal for another in the dataset,
how similar are the AWA properties for the true animal and the one it mistakes it most for? The average number
of overlapping properties show that animals predicted from BEIT are at least as similar to the real animal as
NFRN50 and CLIP. Median is shown as the solid orange line while the dashed green line shows the mean.

NFRN50 Random BEIT NFRN50 CLIP•  Land
•   Ocean•  Land
•   Ocean

(b) UMAP projections of AWA images:While NFRN50 and CLIP cluster tightly along lexical categories
(color coded by animal), BEIT clusters the most distinctly along animals that live in water/the ocean; the
randomly initialized NFRN50 mostly randomly overlap in one cluster.

tions for 85 properties describing the animals (e.g., ‘claws’, ‘stripes’, ‘jungle’), which allow us to
analyze if prompts from certain encoders consistently make mistakes along any of these dimensions.

Metrics When an image prompt produces a caption, we can measure the similarity of any animals
mentioned to the WordNet synset of the ground truth animal label. We can also measure similarity
using the annotated properties provided by the AWA dataset. For a given animal (e.g., “squirrel”),
we can look at the other animal in the dataset that it is most often mistaken for (e.g., “rabbit”) and
compare the proportion of properties that they share.

Results We generate captions for each image using prompts from each frozen image encoder. We
consider a caption to be ‘correct’ if it contains the name of the animal the image depicts. CLIP and
NFRN50 are correct most often: 59% and 43% of the time respectively. BEIT and the randomly
initialized NFRN50 only achieve 13% and 0.4% accuracy, respectively. This aligns with previous
observations that BEIT struggles with encoding fine-grained lexical level concepts. By looking at
failure cases for each model, we can establish whether each model is predicting the presence of a
similar animal or not. In Figure 4a, we show that when captions generated from each model mistake
one animal for another, the mistaken animals are highly similar to the ground truth animal when
measuring both Wu-Palmer similarity (Averages: BEIT: 0.8, NFRN50: 0.81, CLIP: 0.8) and overlap
of AWA properties (Averages: BEIT: 0.62, NFRN50: 0.68, CLIP: 0.59). Although BEIT prompts
do not transfer the exact animal concept to the LM, the coarse grained perceptual information is
transferred and ‘understood’ by the LM. In Figure 4b we create UMAP projections of the encodings
for each image in AWA and indeed find that NFRN50 and CLIP cluster according to tight lexical
categories (the animal types), BEIT clusters most tightly by perceptual features, such as habitat,
having flippers, etc.
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6 DISCUSSION & FUTURE WORK

Because LiMBeR only tunes a linear transformation between image and text spaces, we assume
that success on generating text relevant to an image is indicative of structural similarity between the
two spaces. For example, the relative positions which a vision model encodes the concepts ‘animal’
and ‘inside building’, as well as their compositions (see Figure 2) must be similar to the structure a
language model encodes those concepts under. We find an LM which uses a linguistically supervised
image encoder (NFRN50, CLIP) as the vision backbone in LiMBeR does in fact make use of fine-
grained conceptual information in the image representations. Using a vision-only encoder (BEIT)
leads to generations from the LM that are often incorrect but close under measures of perceptual
relatedness. BEIT has no inductive bias in pretraining to distinguish concepts over some threshold
of perceptual similarity that we would normally distinguish with language. This suggests interesting
future work on the role of language in category formation. Although it appears that the LM encodes
aspects of non-linguistic visual similarity, we believe the linguistically-informed and vision-only
are fundamentally different. LiMBeR can be used to shed light on such questions as well as others
we could not address in this paper, such as how the scale of LMs affects transferability. The GPT-
J model we used is 6B parameters. Do much larger models improve performance dramatically?
Answering this question can hint at whether text-only pretraining at scale can push models towards
general language understanding.

7 CONCLUSION

In this paper, we test the extent to which the representations of language models encode infor-
mation about the non-linguistic world in terms of their ability to use image representations to per-
form vision-language tasks. We show through LiMBeR (Linearly Mapping Between Representation
spaces) that training a linear (thus, distance-preserving) transformation to connect image features to
an LM’s input space is competitive on image captioning and visual question answering benchmarks
with similar models like MAGMA that tune both image and text networks. However, we also find
that such transfer is highly dependant on the amount of linguistic supervision the image encoder
backbone had during its pretraining phase. BEIT, which is a vision-only image encoder underper-
forms compared to CLIP, which was pretrained with natural language captions. We explore what
conceptual information transfers successfully, and find through probing, clustering, and analysis of
generated text that the representational similarity between LMs and vision-only image representa-
tions is mostly restricted to coarse-grained concepts of perceptual features. Our findings indicate that
large LMs do appear to form models of the visual world along these perceptual concepts to some
extent, but are biased to form categorical concepts of words that are not distinguished by vision-
only models. We are excited by future work applying LiMBeR to other domains and modalities as a
behavioral tool for understanding the representations of LMs and other deep neural networks.

8 REPRODUCIBILITY STATEMENT

We are committed to making all of our results reproducible. For training all of our models, we
open source all of our code and the random seeds used. We also release the weights of the linear
projections that were trained for LiMBeR. Because we froze the image and text models attached
to the projection, the weights can be used to quickly reproduce our results with the corresponding
off-the-shelf pretrained models with no other tuning necessary. We use the default data splits for all
datasets we used and release the random seeds used for all tasks that require generation from the LM
in our codebase as well. For the AWA tasks that require matching Wordnet synsets, we document
the exact animal synsets that we used as the ‘ground truth’ for the animal labels in Appendix D,
Table 6.
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A LIMBER TRAINING DETAILS

A.1 TRAINING DETAILS

We mimic the MAGMA pretraining process for each of our models as outlined in Eichenberg et al.
(2021). As described above, the training task is caption generation. For each training example,
an image and caption pair (x, y) is fed into the model. The image encoder E encodes the image
into a i1, ..., ik of dimensionality hI and length k. For the CLIP Encoder, for example, we extract
(12,12,3072) feature patches, which we resize to (144,3072) and feed into the projection layer P .
The output of P is fed as tokens representing the image into the language model LM . The caption
y is tokenized as t1, ..., tm where m is the variable length of the caption. LM is given the encoded
image tokens and starting with t1 learns to minimize the next token log probability of ti for timestep
i conditioned on i1, ..., ik and t1, ...ti−1.

During training, we minimize the loss with the AdamW (Loshchilov & Hutter, 2018) optimizer per
mini-batch, with the help of ZeRO stage 2 (Rajbhandari et al., 2019). We use a dropout probability
of 0.1, a weight decay of 0, betas = (0.9, 0.95), and gradient clipping = 1.0. All models are trained
for 15,000 training steps across 16 A100 GPUs for approximately 1.75 days. Our effective batch
size was 2048. We use a learning rate of 8 ∗ 10−4 for the projection layer P . For models where we
tune E as well, we tune its parameters with a learning rate of 2 ∗ 10−6.

Model Prompt Length (k) Hidden size (hI ) Pretraining

CLIP RN50x16 144 3072
Contrastive

Image-caption
matching

NFRN50 2 2048 Image Classification
BEIT 196 1024 Self-supervised

Table 2: Summary of image encoders used for pretraining. Prompt length refers to the number of
the tokens fed into the language model representing the image.

B CAPTIONING PERFORMANCE

To get a better idea of the kinds of captions LiMBeR produces, see Figure 5, which includes 15
images that were randomly selected from the COCO validation set (2017) and the generated cap-
tions for all models we test. We include a greater range captioning metric results in Table 3 for
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the COCO dataset. Overall, we find the same trends that we report in the main paper, which are
that 1.) the greater amount of linguistic supervision that an image encoder has, the better its cap-
tioning performance and 2.) unfreezing the image encoder does not seem to lead to consistently
significant improvements. We also include the breakdown of the SPICE metric across the associ-
ated subcategories such as relations, attributes, and objects. Of the LiMBeR models, we find that
CLIP based models do the best across the board (12.1 for CLIP vs. 9.28 for NFRN50). Besides the
random baseline, BEIT performs the worst overall except in the color category (0.45 vs. 0.42 for
NFRN50). We also include heatmaps with recall/precision/F1/Wu-Palmer similarity metrics com-
paring the captions generated by each model and the top 50 nouns (objects), modifiers, and relations
from the ground truth captions from the COCO validation set (Figures 6, 7, 8).

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDER SPICE CLIPScore RefCLIPScore
NFRN50 Tuned 0.375 0.229 0.134 0.080 0.127 0.316 0.353 0.091 0.697 0.748
MAGMA (Ours) 0.309 0.216 0.145 0.097 0.146 0.341 0.475 0.110 0.753 0.796

MAGMA (Released) 0.432 0.300 0.203 0.137 0.159 0.376 0.521 0.117 0.767 0.794
NFNRN Random 0.261 0.115 0.044 0.018 0.062 0.208 0.048 0.021 0.495 0.571

BEIT 0.319 0.187 0.105 0.060 0.106 0.299 0.223 0.064 0.636 0.697
NFRN50 0.409 0.254 0.149 0.088 0.132 0.334 0.362 0.093 0.689 0.741

CLIP 0.400 0.278 0.187 0.126 0.161 0.376 0.549 0.121 0.762 0.804

Table 3: All of the caption metrics for the models. For all scores, higher is better

Model SPICE (All) Relations Cardinality Attributes Size Color Object
NFRN50 tuned 9.1 1.12 0.02 1.64 0.33 0.40 19.9
MAGMA (ours) 11.0 1.37 0.00 3.94 0.36 1.31 22.6

MAGMA (released) 11.7 1.99 1.30 3.95 0.50 1.32 23.8
NFRN50 random 2.14 0.06 0.00 0.22 0.00 0.12 4.93

BEIT 6.4 0.61 0.0 1.26 0.21 0.45 14.1
NFRN50 9.28 1.28 0.02 1.70 0.27 0.42 20.2

CLIP 12.1 1.83 0.08 3.76 0.39 0.75 25.08

Table 4: F-scores (x100) for each fine-grained category of the SPICE metric, evaluated on the 2017
COCO validation dataset. The top and bottom divide separates models where the image encoder is
either tuned of frozen, respectively. Models that use CLIP as their image encoder show a large jump
in improvement over other models (even compared to tuned ResNet), especially in the Attributes
(e.g. adjectives) and Object (e.g. nouns) categories.

C VISUAL QUESTION ANSWERING PERFORMANCE

The VQA accuracies are broken down by question type and model for the 4-shot case in Table 5.
We don’t notice any significant patterns in the per question type breakdown. It does seem perhaps
NFRN50 is better at questions that require counting objects in an image. Future work is needed to
determine if this is just noise or a significant trend.

Q Type # Q’s Blind RN Tune MAGMA RN Rand BEIT RN CLIP
how many 20462 33.6 34.7 32 33 18.8 34.8 23.3

is the 17265 64.1 64.7 65.3 64.8 58.9 64.6 61.1
what 15897 17.4 19.9 22.4 16.7 8.9 20.3 26.9

what color is the 14061 30.5 33.7 36.7 33.1 28.9 34 40.3
what is the 11353 15.5 18.7 23.2 16.1 11.9 18.7 29.5

none of the above 8550 38.5 40.1 36 38.7 26.8 39.9 37.4
is this 7841 62.4 64.1 65.8 64.2 57.7 63.7 57.1

is this a 7492 63.3 63.8 67.6 63.4 59.5 63.5 58.5
what is 6328 9.3 12.9 21.2 10 6.6 13.2 24.1

what kind of 5840 15 22.5 29.5 15.8 11.1 22.5 36.9
are the 5264 63 64.2 64.3 63.9 59.4 63.8 58.9

is there a 4679 60.6 61.6 63.8 61.7 60.2 61.5 58.6
what type of 4040 16.4 23 30.7 17.2 12.8 23 38.2
where is the 3716 2 1.1 2.4 0.9 1.0 1.3 3.1

is it 3566 63.6 60.3 62.3 60 57.5 60.4 58.3
what are the 3282 13.4 17.3 23.1 14.7 9.8 18 28.6

does the 3183 66.6 67.6 66 67.4 63.0 67.6 64.6
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Q Type # Q’s Blind RN Tune MAGMA RN Rand BEIT RN CLIP
is 3169 63.8 63.4 65.0 63.1 56.6 62.6 58.5

is there 3120 62.4 62.3 64.6 61.7 59.2 63.1 54.5
what color are the 3118 32 36.3 35.8 34.6 29.4 36 39.7

are these 2839 62.3 65.1 66.8 64.1 60.3 64.9 56.6
are there 2771 60.1 60.2 62.8 60.1 57.5 60.1 55.4

what is the man 2663 10 16.7 30.1 11.4 10.3 15.6 34.7
is the man 2511 61.9 61.7 64.6 62.2 58.9 61.5 59.2

which 2448 23.8 26 27.9 22.7 7.1 26.1 26
how 2422 12.2 10.2 7.5 9.7 4.0 10.8 9.8
are 2359 60.6 62.9 63.5 62.4 57.1 62.5 56.8

does this 2227 66.3 67.2 66.2 67.6 62.7 67.7 61.3
what is on the 2174 11.5 14.9 17.8 13.2 7.3 15.2 23.0

how many people are 2005 27.2 28.0 26.7 27 10.6 27.7 18.7
what does the 1970 7 7.6 12 6.8 2.7 7.4 14.2

what time 1746 15.4 18.9 13.4 16.6 16.0 19.1 22.4
what is in the 1733 9.8 13.7 23.8 10.8 6.8 13.8 30.1
what is this 1696 9.6 21.7 35.2 9.6 11.6 21.8 41.3

what are 1556 9.2 16.8 28.6 10.4 8.7 17.4 36.0
do 1503 68.8 70.1 65.9 70.2 61.4 69.7 64.9

why 1438 3.2 2 2.8 1.5 0.6 1.9 2.8
what color 1428 26.9 28.5 32.1 28.4 23.8 27.8 35.0

are they 1335 60.8 61.2 65.8 62.5 59.8 61.4 59.4
what color is 1335 25.4 26.5 35.8 26.1 29.1 26.6 36.4
are there any 1330 59.1 58.3 61.6 58.7 54.4 58 52.7
where are the 1313 2.8 1.7 2.4 1.2 0.9 1.7 3.3

is he 1087 61.8 62.2 64.2 61.6 59.8 63.1 61.2
what sport is 1086 22 37.1 63.4 24.9 36.6 36.7 67.6

who is 1070 13.6 14.4 14.3 13.7 5.3 14.8 9.6
is the woman 992 63.2 62.2 66.6 61 59.3 61.5 60.9

has 946 64 65.3 65.5 65.5 62.7 66.3 63.5
what brand 935 20.0 16.5 4.4 17.8 6.3 17.8 12.4

how many people are in 905 23.9 28.3 29.0 25.8 15.8 26.9 17.4
what is the person 900 8.2 16.3 32.2 9.2 12.4 17.7 38.0

is this an 890 65.1 67.6 68.2 67.7 61.4 67.4 59.2
can you 872 59.5 58.9 62.3 59.9 58.8 59.6 59.5

what is the woman 853 8.5 15 28.5 10.2 6.7 14.6 32.6
what animal is 833 10.2 28.5 56.1 10.8 16.8 28.6 63.6

what is the color of the 826 35.4 40.4 39.3 36.8 34.3 39.3 44.7
was 818 62.6 61.8 63.8 62.1 59.9 60.9 59.5

is the person 794 61.9 61.7 61.3 62.4 57.5 62 57.1
what is the name 780 3.4 4.4 8 3.8 1.5 4.5 9.0

what room is 762 15 43.4 62.9 19.9 24.0 39.3 65.9
is this person 734 62 61.3 63.3 62.5 60.2 61.9 57.5

do you 724 61.7 62.1 60.1 60.8 55.6 62 58.3
is that a 714 60.9 63.1 62.7 61.5 57.5 62.4 59.6

what number is 673 8.8 7.6 12.6 7.5 0.5 8.9 10.2
could 618 72.3 71.8 67.5 73.6 67.4 71.5 58.9

why is the 514 1.6 1.9 2.5 1.3 0.5 1.6 2.6

Table 5: Average 4-shot accuracies of models on every question type from the VQA2.0 dataset.
Note that NFRN50, NFRN Random, and NFRN Tuned are renamed to save space. MAGMA refers
to our version of the model.

D ANIMALS WITH ATTRIBUTES

AWA2 The Animals with Attributes 2 Dataset contains 37k images of 50 animal classes annotated
with 85 properties (e.g. ‘stripes’, ‘tough’). For each image encoder we generate captions using
image projections into the LM for each image in the dataset and identify any animals mentioned
using overlapping WordNet synsets with the ground truth labels. We report the animal synsets that
we used as the ‘ground truth’ synsets. For example, to calculate accuracy, etc. we split generated
captions on white space and check the possible synsets of each word and check if there is any overlap
with our list. Each label synset is listed in Table 6.
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We report two AWA experiments here: (1) the first appears in the main paper, and investigates how
similar the most similar words mentioned in the generated captions are to the ground truth animal in
terms of Wu-Palmer similarity for the generated captions in which the ground truth animal does not
appear – i.e., mistakes. The per animal results can be found in Table 7. (2) We also report the average
precision (AP) of the average animal properties vector for the animals predicted to the ground truth
for each model. This experiment is similar to the properties-overlap experiment reported in the paper
but is a measure of how often the predicted animal properties are similar vs. very different from the
ground truth. If the LM mentions an animal in the dataset, we add that animal’s property vector to
a running list. If the LM does not mention an animal in the dataset, we ignore that caption. For
each image-caption pair, we take the average of the properties vectors that correspond to the animals
mentioned in the captions, and calculate the AP against the ground truth binary properties vector.
Results per animal class are in Table 8. We exclude any entries for which a model makes fewer than
50 mistakes for an animal class. For example, for all of the images labeled as depicting a tiger in the
AWA dataset, CLIP based captions fail to mention a tiger a single time.

Animal Name WordNet Synset
antelope antelope.n.01
grizzly+bear grizzly.n.01
killer+whale killer whale.n.01
beaver beaver.n.07
dalmatian dalmatian.n.02
persian+cat persian cat.n.01
horse horse.n.01
german+shepherd german shepherd.n.01
blue+whale blue whale.n.01
siamese+cat siamese cat.n.01
skunk skunk.n.04
mole mole.n.06
tiger tiger.n.02
hippopotamus hippopotamus.n.01
leopard leopard.n.02
moose elk.n.01
spider+monkey spider monkey.n.01
humpback+whale humpback.n.03
elephant elephant.n.01
gorilla gorilla.n.01
ox ox.n.02
fox fox.n.01
sheep sheep.n.01
seal seal.n.09
chimpanzee chimpanzee.n.01
hamster hamster.n.01
squirrel squirrel.n.01
rhinoceros rhinoceros.n.01
rabbit rabbit.n.01
bat bat.n.01
giraffe giraffe.n.01
wolf wolf.n.01
chihuahua chihuahua.n.03
rat rat.n.01
weasel weasel.n.02
otter otter.n.02
buffalo american bison.n.01
zebra zebra.n.01
giant+panda giant panda.n.01
deer deer.n.01
bobcat bobcat.n.01
pig hog.n.03
lion lion.n.01

15



Pre-print

mouse mouse.n.01
polar+bear ice bear.n.01
collie collie.n.01
walrus walrus.n.01
raccoon raccoon.n.02
cow cow.n.01
dolphin dolphin.n.02

Table 6: To aid with reproducibility, we report all animal synsets that were used for experiments
that require disambiguating words in captions to animal classes. This allows us to correctly count a
mention of “tigress” in a caption as a mention of the “tiger” animal type without relying on unreliable
string matching techniques.

Random NFRN50 Random BEIT NFRN50 CLIP
polar+bear 0.79 0.60 0.86 0.95 0.96

buffalo 0.73 0.64 0.84 0.93 0.95
bobcat 0.72 0.71 0.83 0.90 0.94

grizzly+bear 0.76 0.70 0.88 0.95 0.94
blue+whale 0.73 0.43 0.69 0.76 0.87
dalmatian 0.77 0.72 0.79 0.83 0.85
chihuahua 0.74 0.70 0.84 0.85 0.85

leopard 0.77 0.70 0.82 0.81 0.85
collie 0.72 0.70 0.85 0.85 0.85

german+shepherd 0.72 0.67 0.84 0.85 0.85
siamese+cat 0.75 0.69 0.85 0.85 0.84
persian+cat 0.74 0.67 0.85 0.85 0.84

ox 0.73 0.69 0.82 0.84 0.84
seal 0.77 0.55 0.77 0.74 0.82

spider+monkey 0.74 0.65 0.81 0.80 0.81
antelope 0.75 0.72 0.78 0.80 0.81
skunk 0.79 0.65 0.84 0.79 0.81
mole 0.79 0.64 0.79 0.84 0.80
lion 0.77 0.74 0.82 0.80 0.79
rat 0.80 0.67 0.79 0.85 0.78

hamster 0.80 0.66 0.79 0.80 0.78
walrus 0.78 0.56 0.72 0.76 0.78
wolf 0.80 0.69 0.85 0.83 0.77

killer+whale 0.71 0.46 0.71 0.73 0.77
humpback+whale 0.73 0.43 0.66 0.67 0.77

chimpanzee 0.72 0.64 0.85 0.74 0.76
moose 0.75 0.60 0.81 0.79 0.74

fox 0.80 0.72 0.84 0.84 0.74
weasel 0.79 0.68 0.81 0.83 0.73

hippopotamus 0.79 0.58 0.76 0.74 0.73
deer 0.77 0.66 0.81 0.80 0.73
otter 0.79 0.60 0.80 0.82 0.72
pig 0.76 0.67 0.83 0.75 0.71
cow 0.71 0.65 0.78 0.78 0.70

sheep 0.76 0.65 0.84 0.82 0.68
horse 0.75 0.62 0.77 0.75 0.59

giant+panda 0.79 0.70 0.87 0.90 0.52
beaver 0.80 0.55 0.77 0.76 –
tiger 0.77 0.74 0.82 – –

elephant 0.79 0.64 0.79 – –
gorilla 0.72 0.60 0.91 0.84 –
squirrel 0.80 0.67 0.80 0.83 –

rhinoceros 0.78 0.67 0.80 0.76 –
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Random NFRN50 Random BEIT NFRN50 CLIP
rabbit 0.76 0.69 0.82 0.81 –

bat 0.82 0.67 0.74 0.74 –
giraffe 0.78 0.70 0.79 0.76 –
zebra 0.76 0.68 0.78 – –
mouse 0.79 0.64 0.75 0.83 –

raccoon 0.79 0.64 0.83 0.81 –
dolphin 0.73 0.49 0.72 0.68 –

Mean= 0.76 0.64 0.80 0.81 0.79

Table 7: Wu-Palmer Similarity for mistakes. Animals for which a model made fewer than 50 mis-
takes are dashed out

Animal/Model Random NFRN50 Random BEIT NFRN50 CLIP
hamster 0.70 0.74 0.83 1.00 1.00

rat 0.79 0.83 0.81 0.99 1.00
squirrel 0.76 0.70 1.00 1.00 1.00

rhinoceros 0.48 0.41 0.81 0.96 1.00
rabbit 0.75 0.76 0.85 1.00 1.00

bat 0.59 0.58 0.58 0.99 1.00
giraffe 0.66 0.73 0.92 1.00 1.00
wolf 0.87 0.84 0.94 1.00 1.00

chihuahua 0.80 0.80 0.79 0.91 1.00
zebra 0.79 0.86 1.00 1.00 1.00

chimpanzee 0.86 0.84 0.83 1.00 1.00
giant+panda 0.71 0.74 0.76 1.00 1.00

deer 0.83 0.91 1.00 1.00 1.00
bobcat 0.72 0.79 0.80 1.00 1.00

lion 0.74 0.93 0.93 1.00 1.00
mouse 0.77 0.69 0.81 0.98 1.00

polar+bear 0.72 0.76 1.00 1.00 1.00
raccoon 0.76 0.77 0.85 1.00 1.00

grizzly+bear 0.70 0.68 1.00 1.00 1.00
dolphin 0.55 0.69 1.00 1.00 1.00

tiger 0.77 0.84 1.00 1.00 1.00
leopard 0.79 0.86 0.95 1.00 1.00
horse 0.88 1.00 1.00 1.00 1.00

german+shepherd 0.87 0.86 0.76 1.00 1.00
blue+whale 0.42 0.34 1.00 1.00 1.00
siamese+cat 0.83 1.00 1.00 1.00 1.00
killer+whale 0.42 0.56 0.88 1.00 1.00

beaver 0.68 0.66 0.77 1.00 1.00
hippopotamus 0.47 0.41 0.80 1.00 1.00

persian+cat 0.75 1.00 1.00 1.00 1.00
spider+monkey 0.79 0.77 0.99 1.00 1.00

humpback+whale 0.43 0.82 0.97 1.00 1.00
elephant 0.61 0.61 1.00 1.00 1.00
gorilla 0.76 0.75 0.89 1.00 1.00
moose 0.77 0.82 0.88 1.00 1.00
cow 0.74 0.82 1.00 1.00 1.00
fox 0.80 0.77 0.96 1.00 1.00
seal 0.57 0.51 0.95 1.00 1.00

sheep 0.59 0.70 0.98 1.00 1.00
pig 0.72 0.70 0.98 1.00 1.00

otter 0.66 0.72 0.73 0.76 1.00
mole 0.72 0.68 0.88 0.82 1.00

walrus 0.39 0.38 0.70 0.72 0.99
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Animal/Model Random NFRN50 Random BEIT NFRN50 CLIP
antelope 0.81 0.85 0.94 0.97 0.98

ox 0.74 0.69 0.89 0.93 0.95
collie 0.84 0.87 0.80 0.93 0.91
weasel 0.85 0.77 0.86 0.90 0.90
buffalo 0.64 0.69 0.91 0.74 0.85
skunk 0.70 0.79 0.83 0.83 0.84

dalmatian 0.86 0.86 0.83 0.72 0.73

Mean= 0.71 0.74 0.89 0.96 0.98

Table 8: Per animal average precision (AP) for properties of mentioned animal in captions per model
for the Animals with Attributes 2 (AWA2) dataset. BEIT, which tends to do worse at captioning and
question answering consistently predicts animals which share similar properties, and considerably
better than randomly initialized NFRN50 and randomly selecting animals as baselines. This sug-
gests that BEIT representations encode similar animals into broad conceptual categories (e.g. large
savanna animals) which are able to linearly transfer to the LM. Without linguistic supervision, BEIT
does not naturally distinguish these by the words we use to describe them, as NFRN50 and CLIP
do.

E PROBING VISUAL REPRESENTATIONS

We train probes on the image encodings from each of our image encoders to classify fine-grained
lexical and coarse grained categorical concepts on several datasets: COCO (Lin et al., 2014), and
CC3M (Sharma et al., 2018), and CIFAR-100 (Krizhevsky et al., 2009). The architecture is a single
linear layer which takes an image encoding of dimension hI (see Table 2) and projects to the number
of classes for the classification task. For single label classification, we use a softmax activation on
the logits and train with cross entropy as the loss function. For multilabel classification tasks, we
use a sigmoid activation layer on top of the logits and train with a binary cross entropy loss function.
We consider a certain class predicted if the value of the class after the sigmoid is ¿0.5.

Hyperparameters For simplicity, all probes are trianed with the same hyperparameters (with a
few exceptions for the CC3M probes): learning rate: 1e-4, optimizer: AdamW (Loshchilov &
Hutter, 2018), betas=(0.9, 0.999), batch size: 48 for CC3M probes; 32 for all others, max epochs:
300 for CC3M probes; 300 for all others.

Object Supercategory Objects within class
accessory backpack, umbrella, handbag, tie, suitcase
animal bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe
appliance microwave, oven, toaster, sink, refrigerator
electronic tv, laptop, mouse, remote, keyboard, cell phone

food banana, apple, sandwich, orange, broccoli, carrot, hot dog,
pizza, donut, cake

furniture chair, couch, potted plant, bed, dining table, toilet
indoor book, clock, vase, scissors, teddy bear, hair drier, toothbrush
kitchen bottle, wine glass, cup, fork, knife, spoon, bowl
outdoor traffic light, fire hydrant, stop sign, parking meter, bench
person person

sports frisbee, skis, snowboard, sports ball, kite, baseball bat,
baseball glove, skateboard, surfboard, tennis racket

vehicle bicycle, car, motorcycle, airplane, bus, train, truck, boat

Table 9: All individual object labels and supercategories they fall under as annotated in the COCO
dataset.
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E.1 COCO OBJECT CLASSES PROBE

The COCO dataset contains labels for 80 objects in images, typically used for object detection or
segmentation tasks. Because one image can be labeled for multiple objects, we train the probe as a
multi-label classification task.

In addition to having fine-grained labels for each type, COCO provides labels for each broad cate-
gory that each object belongs to, called the supercategory. In Table 9, we show which supercategory
each object label falls under.

E.1.1 COARSE-GRAINED SUPERCATEGORY PROBES

We train a multilabel classification probe to classify the object category seen in a given image. We
report F1 for each LiMBeR model in Figure 10. We find that BEIT does a bit worse than NFRN50
and CLIP overall, but is able to classify some categories (images with accessories, vehicles, and
‘outdoor’ objects) well.

E.1.2 FINE-GRAINED OBJECT LABEL PROBES

Next, we look at the probe results for probes trained to identify individual objects by type. Our
results can be found in Figure 11d. We find the same pattern emerges, and that BEIT does not
seem to be significantly closer to the other pretrained models in terms of F1 on the coarse-grained
vs. fine-grained patterns as we might expect. However, we do show that BEIT encodes strong, but
weaker lexical concept categories than the other two models, and that the finding that BEIT transfers
coarser grained information is not due to irreconcilable representational differences between BEIT
space and the LM space.

E.2 CC3M PROBES

We also train the same set of probes on image data from CC3M, but evaluate on the same validation
set from COCO (i.e., the same evaluation as used in Section E.1.2). The purpose of this experiment
is to create a setting for a linear probe that better matches the LiMBeR setup we use in the main
paper. If there are concepts that the probe has no trouble with, but rarely appear in captions, that
could be an indicator that the LM and the image encoder represent that concept very differently in
representation space.

Data To align the CC3M images with the object labels in COCO, we create labels by looking
for exact string matches of the object label words (e.g. “teddy bear”) in CC3M captions. Of the
80 object classes, we cut out any that have fewer than 1000 images. This leaves us with 782,794
training images for the probes across 53 object classes; fewer than the CC3M dataset used to train
LiMBeR, but far more than the previous datasets we used for probing.

Results Because, in this setting, we train our probes on the same distribution as the LiMBeR
models, we compare the F1 of the probes identifying objects in images to the F1 of those concepts
appearing in the generated captions. Our results can be seen in Figure 12. It appears that if the image
encoder encodes the lexical concept, it generally also transfers to the LM with LiMBeR. Limitations
of this approach are that (1) the BEIT probe appears much worse at the domain shift from CC3M to
COCO (e.g., F1 for animals drops 0.3 compared to when the probes are trained on COCO) and (2)
some words in the label space are often substituted for more common words in generated captions
(e.g. “person” could be generated as “man”, “woman”, etc.). This makes it difficult to recognize
cases where the probe succeeds but the transfer fails. An interesting problem for future work is
better understanding which concepts are encoded in an image encoder’s representations, but do not
transfer well with a linear map to the LM.

E.3 CIFAR-100 PROBES

CIFAR-100 (Krizhevsky et al., 2009) is a dataset of 60,000 32x32 images balanced across 100 object
classes. Like COCO, the 100 object labels are also annotated for coarse-grained object categories
including ‘aquatic mammals’ and ‘household furniture’. For CIFAR data, we train a classifier which
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classifies an image for a single object label. Like with COCO, we train a set of probes for the fine
and coarse labels. We were surprised to find that for CIFAR images, BEIT representations tended
to better than NFRN50 in terms of average F1 (for the fine-grained probe, BEIT: 0.57, NFRN50:
0.47); a first for any of the experiments we ran. Given the majority of evidence shows NFRN50
encodes lexical category information stronger than BEIT, we hypothesize this is not because of BEIT
encoding lexical concepts more strongly, but due to the small resolution of images: because BEIT
uses visual tokens, it may be more robust to extremely blurry images, which are out of distribution
for both NFRN50 and BEIT.

E.3.1 COARSE-GRAINED PROBES

In Figure 13 we show the F1 results for the coarse-grained image labels probes trained on image
encodings from each model. Each coarse-grained class in the testing set has 500 images each.

E.3.2 FINE-GRAINED PROBES

In Figure 14d we show the per object class F1 results for the image encodings from each model. Each
class in the testing set has 100 images each. Similar to the COCO probe we do not see significant
intra-model changes between the coarse-grained and fine-grained probe results.
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Ground Truth: A black Honda motorcycle parked in front of a garage.

NFRN50 Tuned :
my motorcycle
MAGMA (Ours) :
my bike
MAGMA (Rel.)  :
a 1973 Honda CB750
NFRN Random:
the car on the road

BEIT:
the bike.'
NFRN50:
a motorcycle on a motorcycle.

CLIP: my motorcycle.

Ground Truth: A bicycle is standing next to a bed in a room.
NFRN50 Tuned :
my bike with a basket.
MAGMA (Ours) :
my bike
MAGMA (Rel.)  :
a vintage bike vintage bike
NFRN Random:
a young boy in a blue shirt and a red hat on a bicycle

BEIT:
the bike.
NFRN50:
my bicycle with a basket on the front.

CLIP: my bike, which is a fixed gear bike.

Ground Truth: A man riding a wave on top of a white surfboard.
NFRN50 Tuned :
a surfer in the water
MAGMA (Ours) :
a surfer riding a wave.

MAGMA (Rel.)  :
a surfer riding a wave
NFRN Random:
the view from the top of the mountain

BEIT:
a surfer riding a wave.
NFRN50:
a surfer in the water.

CLIP: a surfer riding a wave.
Ground Truth: A person standing on top of a beach flying a kite.

NFRN50 Tuned :
a man standing on the beach with a surfboard.
MAGMA (Ours) :
a kite on a beach.

MAGMA (Rel.)  :
a man running on the beach
NFRN Random:
the new car in the garage

BEIT:
a man standing on a rock in the sea.
NFRN50:
a man surfing on the beach.

CLIP: a man flying a kite on the beach.
Ground Truth: A lady explains the process of milking a cow.

NFRN50 Tuned :
a horse and rider at the fair.
MAGMA (Ours) :
a woman on a stage with kids in the audience.
MAGMA (Rel.)  :
a woman milking a cow in front of a group of children.
NFRN Random:
the new restaurant.

BEIT:
the crowd at the event.
NFRN50:
a crowd of people at a festival

CLIP: the dairy cows.

Ground Truth:   A woman is taking notes in front of her laptop
NFRN50 Tuned :
the man who was shot and killed in the lobby of the building.
MAGMA (Ours) :
a student studying.

MAGMA (Rel.)  :
a student working on a paper
NFRN Random:
the man who was killed in the attack.

BEIT:
the room where the meeting took place.
NFRN50:
the room where the meeting took place.

CLIP: a student working on his laptop.
Ground Truth: A couple of men standing on top of a field together.

NFRN50 Tuned :
the team before the match
MAGMA (Ours) :
men playing a game of sport.

MAGMA (Rel.)  :
a men's lacrosse game at the University of New England
NFRN Random:
the new home of the football team

BEIT:
football player and football player during a training session.
NFRN50:
the team before the game.

CLIP: the team during a practice session.

Figure 5: 15 randomly selected images from the COCO 2017 validation dataset and the generated
captions from all models.
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Ground Truth: A man lies on the beach while someone else holds a kite.
NFRN50 Tuned :
the beach with a person lying on the sand.
MAGMA (Ours) :
person and i braiding a kite on the beach.
MAGMA (Rel.)  :
a man and a woman playing on the beach.
NFRN Random:
a man and a woman sitting on a bench in the park

BEIT:
a man and woman doing a handstand on the beach.
NFRN50:
a young man sitting on the beach.

CLIP: a man playing with a kite on the beach.

Ground Truth: A row of cows standing behind a metal fence.
NFRN50 Tuned :
a cow in a pen with a calf
MAGMA (Ours) :
dairy cows on a dairy farm.

MAGMA (Rel.)  :
a dairy farm
NFRN Random:
 the interior of the church

BEIT:
a horse being led through the streets.
NFRN50:
a horse and a cow in a barn

CLIP: a dairy farm.

Ground Truth: The vegetable are laid out neatly at the table.

NFRN50 Tuned :
vegetables and fruits for sale at a market in the city
MAGMA (Ours) :
fresh produce.
MAGMA (Rel.)  :
a farmers market
NFRN Random:
a woman and her child in a garden

BEIT:
the garden
NFRN50:
the vegetables and fruits available at the farmers market.

CLIP: the farm stand with a variety of vegetables

Ground Truth: A woman standing in front of a box handing a woman a bag of food.

NFRN50 Tuned :
a woman with a box of food on her head.
MAGMA (Ours) :
a volunteer distributing food to the homeless.
MAGMA (Rel.)  :
a woman in a white shirt and black pants handing out food to a man in a '

  'white shirt and black pants.

NFRN Random:
a young girl with a flower in her hair and a smile on her face
BEIT:
a woman cooking in her kitchen.

NFRN50:
a woman selling fruit and vegetables in a market
CLIP: person, a volunteer at the food distribution.

Ground Truth: The young boy is playing in the living room of his house.
NFRN50 Tuned :
a little girl with a doll and a toy
MAGMA (Ours) :
person with a prosthetic finger

MAGMA (Rel.)  :
a toddler boy standing up and holding his head.
NFRN Random:
the artist with his son.

BEIT:
a boy in a wheelchair.
NFRN50:
a little girl with a toy airplane

CLIP: person with his new toy
Ground Truth: A white toilet sitting in a corner of a room.

NFRN50 Tuned :
the toilet in the bathroom.
MAGMA (Ours) :
actor and a toilet
MAGMA (Rel.)  :
the bathroom in the <PERSON>'s suite.
NFRN Random:
 the bride and groom at the wedding

BEIT:
a white and black cat on a black background.
NFRN50:
a toilet in a public restroom.

CLIP: the toilet in the room
Ground Truth: Several different pieces of electronic equipment and 

computers on a desk.

NFRN50 Tuned :
my desk at work.
MAGMA (Ours) :
my desk with a laptop and various devices
MAGMA (Rel.)  :
my desk
NFRN Random:
a man and a woman sitting on a bench in a park.

BEIT:
the computer i use.
NFRN50:
my computer desk at work.

CLIP: my desk as it looked after a few days of working.

Ground Truth: A living room filled with furniture and a table.
NFRN50 Tuned :
the living room.
MAGMA (Ours) :
the living room
MAGMA (Rel.)  :
the living room.
NFRN Random:
the living room in the house

BEIT:
the living room.
NFRN50:
the living room in the house.

CLIP: the living room.

Figure 5: 15 randomly selected images from the first random seed taken from the COCO 2017
validation dataset with the generated captions from all models.
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(a) times generated / # of times in ground truth

(b) precision

(c) recall

(d) The Wu-Palmer Similarity between the ground truth word and the most similar word in the generated
captions.

(e) f1

Figure 6: The top 50 nouns that appear in the ground truth captions of the COCO validation set and
how often each model generates them
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(a) times generated / # of times in ground truth

(b) precision

(c) recall

(d) f1

Figure 7: The top 50 modifiers that appear in the ground truth captions of the COCO validation set
and how often each model generates them
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(a) times generated / # of times in ground truth

(b) precision

(c) recall

(d) f1

Figure 8: The top 50 relations that appear in the ground truth captions of the COCO validation set
and how often each model generates them
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Answer: microwave
NFRN50 Tuned :
A stove.
MAGMA (Ours) :
microwave oven.
MAGMA (Rel.)  :
A vent hood.
NFRN Random:
A hob.

BEIT:
A stove.
NFRN50:
The stove.

CLIP: The oven.

Answer: 1/3
NFRN50 Tuned :
Enough to make them sick.
MAGMA (Ours) :
enough to fill a lunch box.
MAGMA (Rel.)  :
Enough to make them sick.
NFRN Random:
They will eat as much as they want.

BEIT:
They will eat about a cup of pickle.
NFRN50:
They will eat as much as they want.

CLIP: All of it!

Answer: 60
NFRN50 Tuned :
___
MAGMA (Ours) :
it took.
MAGMA (Rel.)  :
It took her about 10 minutes.
NFRN Random:
It took her about 10 minutes to make the kite fly

BEIT:
It took her about five minutes to make it fly.
NFRN50:
___

CLIP: It took her about a minute to make it fly.

Answer: no
NFRN50 Tuned :
Yes, there are people in the photo.
MAGMA (Ours) :
yes
MAGMA (Rel.)  :
Yes, there are people in the photo.
NFRN Random:
Yes, there are people in the photo.

BEIT:
yes, there are people in the photo.
NFRN50:
Yes, there are.

CLIP: Yes, there are people in the photo.

Answer: cloudy
NFRN50 Tuned :
Clear
MAGMA (Ours) :
it rains most of the time and the clouds are dark.
MAGMA (Rel.)  :
The skies are cloudy.
NFRN Random:
They are clear and blue.

BEIT:
The sky is clear and the sun is shining.
NFRN50:
Very cloudy

CLIP: The skies are cloudy and the winds are strong.
Answer: Gray

NFRN50 Tuned :
The dog is brown.
MAGMA (Ours) :
he's blue.
MAGMA (Rel.)  :
It's a brown dog.
NFRN Random:
The dog is black.

BEIT:
It's a brown dog.
NFRN50:
It is a black and white dog.

CLIP: It's a white dog.
Answer: outside

NFRN50 Tuned :
It's outside.
MAGMA (Ours) :
both.
MAGMA (Rel.)  :
Inside
NFRN Random:
It is a picture of a person sitting on a bench

BEIT:
It's outside.
NFRN50:
Inside

CLIP: It's outside.

Answer:   no
NFRN50 Tuned :
Â he is wearing a suit and tie, but he
MAGMA (Ours) :
he's probably just a street performer.
MAGMA (Rel.)  :
No, he's on his way to a skateboard
NFRN Random:
He is a very smart guy.

BEIT:
No, he's on his way to a job interview
NFRN50:
He is on his way to a corporate job

CLIP: No, he's on his way to a skate park
Answer: Yes

NFRN50 Tuned :
Yes, it is.
MAGMA (Ours) :
no.
MAGMA (Rel.)  :
Yes.
NFRN Random:
Yes, it is a two-way street.

BEIT:
Yes, it is.
NFRN50:
Yes, it is.

CLIP: Yes, it is.
Answer: Yes

NFRN50 Tuned :
No, it looks like it is about to eat you
MAGMA (Ours) :
he looks like he is trying to be happy.
MAGMA (Rel.)  :
It's a zebra, so it's always happy
NFRN Random:
Yes, he is enjoying the sunshine.

BEIT:
Yes, it is happy.
NFRN50:
Yes!

CLIP: Yes, he is enjoying the grass.

Answer: skiing
NFRN50 Tuned :
He was skiing on a slope that was covered in ice
MAGMA (Ours) :
skiing!
MAGMA (Rel.)  :
He was skiing.
NFRN Random:
He was a member of the wrestling team.

BEIT:
He was trying to catch a ball.
NFRN50:
He was skiing on a slope that was covered in ice

CLIP: He was skiing on a chair lift.

Answer: Polo
NFRN50 Tuned :
It's a brand called.
MAGMA (Ours) :
brand.

MAGMA (Rel.)  :
<PERSON>
NFRN Random:
It is a white shirt with a blue collar and a

BEIT:
The shirt is a brand.
NFRN50:
It's a new one.

CLIP: It's a sweater.
Answer: eating

NFRN50 Tuned :
It is eating grass.
MAGMA (Ours) :
he is eating grass!
MAGMA (Rel.)  :
It is eating grass.
NFRN Random:
It is trying to get out of the water.

BEIT:
It is eating grass.
NFRN50:
Eating grass

CLIP: Eating grass.
Answer: no

NFRN50 Tuned :
No, he is not.
MAGMA (Ours) :
no
MAGMA (Rel.)  :
No.
NFRN Random:
Yes, he is wearing a helmet.

BEIT:
No, he is not.
NFRN50:
No, he is not.

CLIP: No.

Answer: suitcase
NFRN50 Tuned :
It's a book.
MAGMA (Ours) :
a suitcase.
MAGMA (Rel.)  :
A suitcase.
NFRN Random:
It is a cat.

BEIT:
It's a cat.
NFRN50:
It's a laptop!

CLIP: A suitcase.

How much pickle will  
they eat?

What is the thing above the 
stove called?

How are the skies?

What color is the dog on the 
table?

Is this picture taken inside or 
outside?

Is he on his way to a corporate 
job?

Is the street a two-way street?

Does the zebra look happy?

What activity caused him to fall?

How many minutes did it take for 
the little girl to make her kite fly?

What brand shirt is man 
wearing?

What is the zebra doing?

Is the player wearing helmet?

What is the cat sitting on?

Figure 9: 15 randomly selected images from the VQA2 validation set and the generated answers
from all models.
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Answer: microwave
NFRN50 Tuned :
A stove.
MAGMA (Ours) :
microwave oven.
MAGMA (Rel.)  :
A vent hood.
NFRN Random:
A hob.

BEIT:
A stove.
NFRN50:
The stove.

CLIP: The oven.

Answer: 1/3
NFRN50 Tuned :
Enough to make them sick.
MAGMA (Ours) :
enough to fill a lunch box.
MAGMA (Rel.)  :
Enough to make them sick.
NFRN Random:
They will eat as much as they want.

BEIT:
They will eat about a cup of pickle.
NFRN50:
They will eat as much as they want.

CLIP: All of it!

Answer: 60
NFRN50 Tuned :
___
MAGMA (Ours) :
it took.
MAGMA (Rel.)  :
It took her about 10 minutes.
NFRN Random:
It took her about 10 minutes to make the kite fly

BEIT:
It took her about five minutes to make it fly.
NFRN50:
___

CLIP: It took her about a minute to make it fly.

Answer: no
NFRN50 Tuned :
Yes, there are people in the photo.
MAGMA (Ours) :
yes
MAGMA (Rel.)  :
Yes, there are people in the photo.
NFRN Random:
Yes, there are people in the photo.

BEIT:
yes, there are people in the photo.
NFRN50:
Yes, there are.

CLIP: Yes, there are people in the photo.

Answer: cloudy
NFRN50 Tuned :
Clear
MAGMA (Ours) :
it rains most of the time and the clouds are dark.
MAGMA (Rel.)  :
The skies are cloudy.
NFRN Random:
They are clear and blue.

BEIT:
The sky is clear and the sun is shining.
NFRN50:
Very cloudy

CLIP: The skies are cloudy and the winds are strong.
Answer: Gray

NFRN50 Tuned :
The dog is brown.
MAGMA (Ours) :
he's blue.
MAGMA (Rel.)  :
It's a brown dog.
NFRN Random:
The dog is black.

BEIT:
It's a brown dog.
NFRN50:
It is a black and white dog.

CLIP: It's a white dog.
Answer: outside

NFRN50 Tuned :
It's outside.
MAGMA (Ours) :
both.
MAGMA (Rel.)  :
Inside
NFRN Random:
It is a picture of a person sitting on a bench

BEIT:
It's outside.
NFRN50:
Inside

CLIP: It's outside.

Answer:   no
NFRN50 Tuned :
Â he is wearing a suit and tie, but he
MAGMA (Ours) :
he's probably just a street performer.
MAGMA (Rel.)  :
No, he's on his way to a skateboard
NFRN Random:
He is a very smart guy.

BEIT:
No, he's on his way to a job interview
NFRN50:
He is on his way to a corporate job

CLIP: No, he's on his way to a skate park
Answer: Yes

NFRN50 Tuned :
Yes, it is.
MAGMA (Ours) :
no.
MAGMA (Rel.)  :
Yes.
NFRN Random:
Yes, it is a two-way street.

BEIT:
Yes, it is.
NFRN50:
Yes, it is.

CLIP: Yes, it is.
Answer: Yes

NFRN50 Tuned :
No, it looks like it is about to eat you
MAGMA (Ours) :
he looks like he is trying to be happy.
MAGMA (Rel.)  :
It's a zebra, so it's always happy
NFRN Random:
Yes, he is enjoying the sunshine.

BEIT:
Yes, it is happy.
NFRN50:
Yes!

CLIP: Yes, he is enjoying the grass.

Answer: skiing
NFRN50 Tuned :
He was skiing on a slope that was covered in ice
MAGMA (Ours) :
skiing!
MAGMA (Rel.)  :
He was skiing.
NFRN Random:
He was a member of the wrestling team.

BEIT:
He was trying to catch a ball.
NFRN50:
He was skiing on a slope that was covered in ice

CLIP: He was skiing on a chair lift.

Answer: Polo
NFRN50 Tuned :
It's a brand called.
MAGMA (Ours) :
brand.

MAGMA (Rel.)  :
<PERSON>
NFRN Random:
It is a white shirt with a blue collar and a

BEIT:
The shirt is a brand.
NFRN50:
It's a new one.

CLIP: It's a sweater.
Answer: eating

NFRN50 Tuned :
It is eating grass.
MAGMA (Ours) :
he is eating grass!
MAGMA (Rel.)  :
It is eating grass.
NFRN Random:
It is trying to get out of the water.

BEIT:
It is eating grass.
NFRN50:
Eating grass

CLIP: Eating grass.
Answer: no

NFRN50 Tuned :
No, he is not.
MAGMA (Ours) :
no
MAGMA (Rel.)  :
No.
NFRN Random:
Yes, he is wearing a helmet.

BEIT:
No, he is not.
NFRN50:
No, he is not.

CLIP: No.

Answer: suitcase
NFRN50 Tuned :
It's a book.
MAGMA (Ours) :
a suitcase.
MAGMA (Rel.)  :
A suitcase.
NFRN Random:
It is a cat.

BEIT:
It's a cat.
NFRN50:
It's a laptop!

CLIP: A suitcase.

How much pickle will  
they eat?

What is the thing above the 
stove called?

How are the skies?

What color is the dog on the 
table?

Is this picture taken inside or 
outside?

Is he on his way to a corporate 
job?

Is the street a two-way street?

Does the zebra look happy?

What activity caused him to fall?

How many minutes did it take for 
the little girl to make her kite fly?

What brand shirt is man 
wearing?

What is the zebra doing?

Is the player wearing helmet?

What is the cat sitting on?

Are there people in the photo?

Figure 9: 15 randomly selected images from the VQA2 validation set and the generated answers
from all models.
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(a) NFRN50 Random (b) BEIT

(c) NFRN50 (d) CLIP

Figure 10: Probes trained on COCO images to classify the supercategories of the objects in the
images
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(a) NFRN50 Random Per COCO object label probe F1 results

(b) BEIT Per COCO object label probe F1 results

(c) NFRN50 Per COCO object label probe F1 results

(d) CLIP Per COCO object label probe F1 results
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Figure 12: F1 of image encoder probes trained on CC3M and evaluated on COCO. We find that F1
of captions by object category tend to follow those of probe performance. Notably the BEIT probe
is much worse at transferring from CC3M to COCO, and the captioning F1 tends to be consistently
higher which makes it difficult to draw conclusions for this model. Generally, it appears the abil-
ity to encode lexical information into the image representation entails being able to transfer that
information to the LM with a linear map.
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(a) NFRN50 Random (b) BEIT

(c) NFRN50 (d) CLIP

Figure 13: Probes trained on CIFAR images to classify the coarse labels of the objects in the images
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(a) NFRN50 Random Per CIFAR object label probe F1 results

(b) BEIT Per CIFAR object label probe F1 results

(c) NFRN50 Per CIFAR object label probe F1 results

(d) CLIP Per CIFAR object label probe F1 results
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