
ar
X

iv
:1

60
6.

07
82

2v
1

 [c
s.

C
L]

 2
4

Ju
n

20
16

Efficient Parallel Learning of Word2Vec

Jeroen B.P. Vuurens J.B.P.VUURENS@TUDELFT.NL

The Hague University of Applied Science
Delft University of Technology, The Netherlands

Carsten Eickhoff CARSTEN.EICKHOFF@INF.ETHZ.CH

ETH Zurich
Department of Computer Science, Zurich, Switzerland

Arjen P. de Vries ARJEN@ACM .ORG

Radboud University Nijmegen
Institute for Computing and Information Sciences, Nijmegen, The Netherlands

Abstract

Since its introduction, Word2Vec and its variants
are widely used to learn semantics-preserving
representations of words or entities in an em-
bedding space, which can be used to produce
state-of-art results for various Natural Language
Processing tasks. Existing implementations aim
to learn efficiently by running multiple threads
in parallel while operating on a single model in
shared memory, ignoring incidental memory up-
date collisions. We show that these collisions can
degrade the efficiency of parallel learning, and
propose a straightforward caching strategy that
improves the efficiency by a factor of 4.

1. Introduction

Traditional NLP approaches dominantly use simple bag-
of-word representations of documents and sentences, but
recent approaches that use distributed representation of
words, by constructing a so-called ”word embedding”,
have been shown effective across many different NLP tasks
(Weston et al., 2014). Mikolov et al. introduced efficient
strategies to learn embeddings from text corpora, which are
collectively known as Word2Vec (Mikolov et al., 2013).
They have shown that simply increasing the volume of
training data improves the semantic and syntactic gener-
alizations that are automatically encoded in embedding
space, and therefore efficiency is the key to increase the
potential of this technique.

Proceedings of the 33rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

In recent work, Ji et al. argue that the current implemen-
tations of Word2Vec do not scale well over the number
of used cores, and propose a solution that uses higher-
level linear algebra functions to improve the efficiency of
Word2Vec using negative sampling (Ji et al., 2016). In this
work, we analyze the scalability problem and conclude it is
mainly caused by simultaneous access of the same memory
by multiple threads. As a straightforward solution, we pro-
pose to cache frequently updated vectors, and show a large
gain in efficiency as a result.

2. Related Work

Bengio et al. propose to learn a distributed represen-
tation for words in an embedding space based on the
words that immediately precede a word in natural lan-
guage (Bengio et al., 2006). They use a shallow neural net-
work architecture to learn a vector-space representation for
words comparable to those obtained in latent semantic in-
dexing. Recently, Mikolov et al. proposed a very efficient
way to learn embeddings over large text corpora called
Word2Vec (Mikolov et al., 2013), which produces state-
of-the-art results on various tasks, such as word similar-
ity, word analogy tasks, named entity recognition, machine
translation and question answering (Weston et al., 2014).
Word2vec uses Stochastic Gradient Descent to optimize the
vector representations by iteratively learning on words that
appear jointly in text.

For efficient learning of word embeddings, Mikolov et al.
proposed two strategies that avoid having to update the
probability of observing every word in the vocabulary.
Negative samplingconsists of updating observed word
pairs together with a limited number of random word pairs
to regularize weights. Alternatively, ahierarchical soft-
max is used as a learning objective, for which the output

http://arxiv.org/abs/1606.07822v1

Efficient Parallel Learning of Word2Vec

layer is transformed into a binary Huffmann tree and in-
stead of predicting an observed word, the model learns the
word’s position in the Huffmann tree by the left and right
turns at each inner node along its path from the root.

The original Word2Vec implementation uses a Hogwild
strategy of allowing processors lock-free access to shared
memory, in which they can update at will (Recht et al.,
2011). Recht et al. show that when data access is sparse
memory overwrites are rare and barely introduce error
when they occur. However, Ji et al. notice that for train-
ing Word2Vec this strategy does not use computational re-
sources efficiently (Ji et al., 2016). They propose to use
level-3 BLAS routines on specific CPU’s to operate on a
mini-batches, which is then updated to the main memory
and reduces the access to main memory. They address the
Word2Vec variant that uses negative sampling. In our work
we address the hierarchical softmax variant, and show that
straightforward caching of frequently occurring data is suf-
ficient to improve efficiency on conventional hardware.

3. Experiment

3.1. Analysis of inefficiencies for learning Word2Vec

For faster training of models, commonly, the input is pro-
cessed in parallel by multiple processors. One strategy is
to map the input into separate batches and aggregating the
results in a reduce step. Alternatively, multithreading can
be used on a single model in shared memory, which is used
by the original Word2Vec implementation in C as well as
the widely used Gensim package for Python. We analyzed
how the learning times scale over the used number of cores
with Word2Vec, and noticed the total run time appears to be
optimal when using approximately 8 cores, beyond which
efficiency degrades (see Figure1).

Ji et al. analyze this problem and conclude that multi-
ple threads can cause conflicts when they attempt to up-
date the same memory (Ji et al., 2016). Current Word2Vec
implementations simply ignore memory conflicts between
threads, however, concurrent attempts to read and update
the same memory increases memory access latency. This
Hogwild strategy was introduced under the assumption that
memory overwrites are rare, however, for natural language
memory collisions may be more likely than for other data
given the skew towards frequently occurring words. Col-
lisions are even more likely when learning against a hier-
archical softmax, since the top nodes in the Huffmann tree
are used by a large part of the vocabulary.

3.2. Caching frequently used vectors

For efficient learning of word embeddings with negative
sampling, Ji et al. propose a mini-batch strategy that uses a
level-3 BLAS function to multiply a matrix that consists of

all words that share the same context word (e.g. with a win-
dow size of 5 up to 10 words would train against the same
context term), with a matrix that contains the context word
and a shared set of negative samples (Ji et al., 2016). Effi-
ciency is improved up to 3.6x over the original Word2Vec
implementation, by the leveraging the improved ability for
matrix-matrix multiplication in high-end CPU’s, and only
updating the model after each mini-batch. Typically, the
batches are limited to about 10-20 words for convergence
reasons, reporting only a marginal loss of accuracy.

We suspect that for parallel training a model in shared
memory the real bottleneck is latency caused by concurrent
access of the same memory. The solution that is presented
by (Ji et al., 2016) uses level-3 BLAS functions to perform
matrix-matrix multiplications, which implicitly lowers the
number of times shared memory is accessed and updated.
We alternatively propose a straightforward caching strat-
egy that provides a comparable efficiency gain over the hi-
erarchical softmax variant, that is less hardware dependent
since it does not need highly optimized level-3 BLAS func-
tions. When using the hierarchical softmax, efficiency is
more affected by memory conflicts than with negative sam-
pling; the root node of the tree is in every word’s path and
therefore gives a conflict every time, the direct children of
the root will be in the path of half the vocabulary, etc. When
each thread caches the most frequently used upper nodes of
the tree and only updates the change to main memory after
a number of trained words, the number of memory conflicts
is reduced.

Algorithm 1 describes the caching in pseudocode, in which
for the most frequently used inner nodes in the Huffmann
tree a local copy is created and used for the updates and
the non frequently used inner nodes are updated in shared
memory. After processing a number of words (typically
in the range 10 to 100) for every cached weight vector the
update is computed by subtracting the original value when
cached and adding this update to the weight vector in main
memory. The vectors are processed using level-1 BLAS
functions,scopy to copy a vector,sdot to compute the
dot product between two vectors andsaxpy to add a scalar
multiplied by the first vector to the second vector.

The proposed caching strategy is implemented in
Python/Cython and published as part of the Cythnn open
source project1.

4. Results

4.1. Experiment setup

To compare the efficiency of the proposed caching strat-
egy with the existing implementations, we used the skip-

1http://cythnn.github.io

http://cythnn.github.io

Efficient Parallel Learning of Word2Vec

Algorithm 1 Cached Skipgram HS

1: for each wordidv in textdo
2: for each wordidw within window ofv do
3: for each noden, turnt in treepath tov do
4: if isFrequent(n) then
5: if not cached[n] then
6: scopy(weight[n], cachedweight[n])
7: scopy(cachedweight[n], original[n])
8: cached[n] = True
9: end if

10: usedweight=cachedweight[n]
11: else
12: usedweight=weight[n]
13: end if
14: f = sigmoid(sdot(vector[w], usedweight))
15: gradient = (1 -t - f) * alpha
16: saxpy(1, usedweight, hiddenlayer)
17: saxpy(1, vector[w], usedweight)
18: end for
19: saxpy(1, hiddenlayer, vector[w])
20: end for
21: if time to flush cachethen
22: for each noden do
23: if isFrequent(n) and cached[n] then
24: saxpy(-1, original[n], cachedweight[n])
25: saxpy(1, cachedweight[n], weight[n])
26: cached[n] = False
27: end if
28: end for
29: end if
30: if time to update alphathen
31: update alpha
32: end if
33: end for

gram with hierarchical softmax, with the default set-
tings mintf=5, windowsize=5, vectorsize=100, downsam-
ple=0.001, and without negative sampling. Although our
implementation is only slightly improved by downsam-
pling of frequent terms, the original C implementation is
approximately 24% faster and produces slightly more ac-
curate word embeddings on the analogy test. Every run
processed 10 iterations over the standard Text8 collection2,
which consists of the first 100MB of flat text words found
in Wikipedia. All experiments were performed on the same
virtual machine with two Intel(R) Xeon(R) CPU E5-2698
v3, which together have 32 physical cores.

2http://mattmahoney.net/dc/text8.zip

4.2. Efficiency

In Figure1, we compare the changes in total run time when
adding more cores between the original Word2Vec C im-
plementation, Gensim, Cythnn without caching (c0) and
Cythnn when caching the 31 most frequently used nodes
in the Huffmann tree (c31). The first observation is that
Word2Vec and Cythnn without caching do have degrading
efficiencies beyond the use of 8 cores, while Gensim is ap-
parently more optimized to use up to 16 cores. The run of
Cythnn that caches the 31 top-vectors (157 sec) performs
up to 3.9x faster than the fastest C-run (630 sec) and up to
2.5x faster than the fastest Gensim run (385 sec).

2 4 6 8 10 12 1416 18 20 22 2426 28

150

200

300

400

500
600

800

1000
1200

#cores

ex
ec

u
tio

n
tim

e(
s)

w2v gensim c0 c31

Figure 1.Comparison of the total execution time when chang-
ing the number of cores (x-axis) between the original Word2Vec,
Gensim, Cythnn without caching and Cythnn when caching the
top-31 nodes in the Huffmann tree

In Figure2 we compare the execution time of Cythnn when
changing the number of cached top level nodes in the Huff-
mann tree over different numbers of cores used. Interest-
ingly, caching just the root node (#cached nodes=1) has
the highest impact on efficiency, and reduces the execution
time by more than 40% when using more than 20 cores.
This supports the idea that the reduction of concurrent ac-
cess of the same memory is key to improving efficiency.
Since the root node in the Huffmann tree is in the path of
every word in the vocabulary, caching just this node im-
proves most. On the Text8 dataset the improvement is near
optimal when caching at least the top-15 nodes in the tree.
In our experiments, using more than 24 cores is slightly
counter effective, possibly indicating that memory band-
width is fully used.

http://mattmahoney.net/dc/text8.zip

Efficient Parallel Learning of Word2Vec

0 1 3 7 15 31 63

150

200

300

400

500
600

800

#cached nodes

ex
ec

u
tio

n
tim

e(
s)

cores
4
8
12
16
20
24
28

Figure 2.Comparison of the execution time when changing the
number of cores and on the x-axis the number of most frequent
terms from the Huffmann tree that are cached..

4.3. Effectiveness

Ji et al. compared the effectiveness between their approach
and the original Word2Vec implementation and report that
processing in mini-batches has a marginal but noticeable
negative effect on the accuracy of the embeddings learned.
In Table 1, we show the average accuracy of each sys-
tem over the runs of 2-28 cores, where the accuracy was
computed using the evaluation tool and question-words test
set that is packaged with Word2Vec3. The results show a
higher accuracy for Gensim, but we have found no doc-
umentation that helps to explain this difference. Using
Cythnn, caching does not result in lower effectiveness as
reported by (Ji et al., 2016), a difference being that our
caching approach always uses updated vectors within a
thread whereas the BLAS-3 solution does not use updated
vectors within a mini-batch.

When varying cache update frequency u, we expect a trade-
off between training efficiency and model accuracy. In
practice, our experiments show, that this balance is a slowly
shifting one that is further influenced by the chosen window
size n. Using the default window size of n = 5, updating
the cache after each training word (u = 1) is as efficient as
flushing after u = 10 words. For this paper, cached updates
were written back to shared memory every 10 words.

5. Conclusion

In this study, we analyzed the scalability of parallel learn-
ing of a single model in shared memory, most specifically
learning Word2Vec using a Skipgram architecture against

3http://word2vec.googlecode.com

Table 1.Comparison of the accuracy between systems
System Accuracy
W2V C 33.73
Gensim 35.45
Cythnn no cache 33.54
Cythnn cache top-31 33.57

a hierarchical softmax. When different processes access
and update the same memory, either because a skew in
the data or because of the increased number of concur-
rent cores used, there is only limited benefit to adding more
cores. The original Word2Vec implementation is most ef-
ficient when trained using 8 cores and becomes less effi-
cient when more cores are added. We propose a straight-
forward caching strategy that caches the weight vectors that
are used most frequently, and updates their change to main
memory after a short delay reducing concurrent access of
shared memory. We compared the efficiency of this strat-
egy against existing Word2Vec implementations and show
up to 4x improvement in efficiency.

Acknowledgment

This work was carried out on the Dutch national e-
infrastructure with the support of SURF Foundation.

References

Bengio, Yoshua, Schwenk, Holger, Senécal, Jean-
Sébastien, Morin, Fréderic, and Gauvain, Jean-Luc.
Neural probabilistic language models. InInnovations in
Machine Learning, pp. 137–186. Springer, 2006.

Ji, Shihao, Satish, Nadathur, Li, Sheng, and Dubey,
Pradeep. Parallelizing word2vec in shared and dis-
tributed memory.preprint arXiv:1604.04661, 2016.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations of
words and phrases and their compositionality. InAd-
vances in neural information processing systems, pp.
3111–3119, 2013.

Recht, Benjamin, Re, Christopher, Wright, Stephen, and
Niu, Feng. Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. InAdvances in Neural
Information Processing Systems, pp. 693–701, 2011.

Weston, Jason, Chopra, Sumit, and Adams, Keith. #
tagspace: Semantic embeddings from hashtags. InPro-
ceedings of EMNLP 2014, 2014.

http://word2vec.googlecode.com

