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Abstract—Epilepsy is one of the most common neurological
disorders, typically observed via epileptic seizures. Seizure identi-
fication is commonly monitored through Electroencephalogram
(EEG) recordings due to their routine and low expense collection.
The stochastic nature of EEG makes seizure identification
via manual inspections performed by highly-trained experts a
tedious endeavor, motivating the use of automated identification.
The literature on automated identification focuses mostly on
supervised learning methods requiring expert labels indicating
EEG segments that contain seizures, which are difficult to obtain.
Motivated by these observations, we pose seizure identification
as an unsupervised anomaly detection problem. To this end,
we employ the first fully-unsupervised transformer-based model
for seizure identification on raw EEG. We train an autoencoder
involving a transformer encoder via an unsupervised loss function,
incorporating a novel masking strategy uniquely designed for
multivariate time-series data such as EEG. Training employs
EEG recordings that do not contain any seizures, while seizures
are identified with respect to mean reconstruction errors at
inference time. We evaluate our method on three publicly available
benchmark EEG datasets for distinguishing seizure vs. non-
seizure windows. Our method leads to significantly better seizure
identification performance than the supervised learning counterparts,
by up to 16% recall, 9% accuracy, and 9% Area under the Receiver
Operating Characteristics Curve (AUC), establishing a particular
benefit on highly imbalanced data.

Index Terms—Epilepsy, Seizure, EEG, Unsupervised Learning,
Time-series Transformer

I. INTRODUCTION

Epilepsy is one of the most common neurological disorders,
affecting over 70 million people worldwide [1]. Epilepsy
patients typically suffer from seizures, involving uncontrolled
jerking movements or momentary losses of awareness due
to abnormal excessive or synchronous activities in the brain
[2]. The degraded quality of life for patients strongly mo-
tivates early seizure identification, as early seizures have
been shown to be prognostic markers for later epileptogenic
development. Successful identification of early seizures can
initiate antiepileptogenic intervention and therapies that can
remarkably improve the quality of life for patients and their
caregivers. To this end, electroencephalogram (EEG) recordings
received particular attention for seizure identification [3], due
to their routine and low expense collection compared to, e.g.,
neuroimaging. Seizures on EEG are defined as generalized
spike-wave discharges at three per second or faster, and clearly
evolving discharges of any type that reach a frequency of four
per second or faster.

Despite their volume and rich information content, EEG
recordings are known to contain many artifacts due to
movement, physiological activity such as perspiration, and

measurement hardware [4], [5]. The stochastic nature of
clinically-acquired EEG makes seizure identification via man-
ual inspection laborious and difficult, leading to significant
variability across clinical labels of different experts [6]. This
challenge motivated the recent literature to focus on automated
identification of epileptic seizures on EEG as a promising
complement to manual inspection. The literature on automated
EEG seizure identification is extensive (c.f. Section II), focusing
mostly on supervised machine learning methods using both
manual feature extraction [7]–[10], as well as deep neural
networks (DNNs) without manual feature extraction [11]–[13].

Despite their success, supervised methods require expert
labels indicating EEG segments that contain seizures, while
obtaining large and consistently-labeled EEG datasets is un-
favourable due to the stochastic nature of EEG [6]. Difficulty of
label collection also leads to severely imbalanced EEG datasets,
in which the number of non-seizure recordings significantly
exceeds the number of seizure recordings; this poses a further
challenge for supervised learning that is prone to overfitting
towards dominant class predictions [14].

Unsupervised machine learning methods that do not rely
on labeled data have not yet been widely explored. A few
methods employed traditional shallow models for unsupervised
seizure identification on both raw EEG [15], as well as spatio-
temporal features extracted from EEG [16]–[18]. To the best of
our knowledge, unsupervised DNN methods for EEG seizure
identification have been limited to a couple of recent works,
requiring feature extraction prior to training [19] or employing
convolutional DNN architectures that are not tailored for
multivariate time-series data such as EEG [20].

We propose a fully-unsupervised deep learning approach that
can identify seizures on raw EEG recordings. To this end, we
make the following contributions:

• We employ the first unsupervised transformer-based model
for seizure identification on raw EEG, inspired by recent
advances in multivariate time-series analysis [21].

• We pose seizure identification as an anomaly detection
problem. To this end, we train an autoencoder involving
a transformer encoder via an unsupervised loss function,
incorporating a novel masking strategy uniquely designed
for modeling multivariate time-series data such as EEG.
As training employs EEG recordings that do not contain
seizures, seizures are identified via mean reconstruction
errors at inference time.

• We extensively validate the seizure identification per-
formance of our method on three publicly available
benchmark EEG datasets. Our method can successfully



distinguish between non-seizure vs. seizure windows,
with up to 0.94 Area under the Receiver Operating
Characteristics Curve (AUC). Moreover, our unsupervised
anomaly detection approach leads to significantly better
seizure identification performance than the supervised
learning counterparts, by up to 16% recall, 9% accuracy,
and 9% AUC, establishing a particular benefit for learning
from highly imbalanced data.

II. RELATED WORK

The literature on automated seizure identification on EEG is
vast; we refer the reader to the review by [22] for more details.
A significant body of works focus on extracting spatio-temporal
features from EEG via, e.g., wavelet transformations [7], [23],
local mean decomposition [6], Fourier transformations [8],
[10], and power spectra [9]. Extracted features are used to
train supervised machine learning methods, including support
vector machines and neural networks, to identify whether a
given EEG contains a seizure in a binary classification setting.

Deep neural network (DNN)-based supervised seizure iden-
tification methods have lately dominated the literature [24]
and obviated the need for manual feature extraction. DNN
methods further improved in combination with recurrent neural
networks to aid time-series modeling [25], adversarial training
to generalize identification across patients [11], autoencoder-
based feature extraction [26], [27], and attention mechanisms
to improve predictions and interpretability [12].

In recent years, self-attention modules have become an
integral part of DNN methods employed in machine vision [28],
natural language processing [29], and time-series modeling [21];
the resulting DNN architectures are termed as transformers.
Transformer architectures have been very recently applied for
various identification tasks on EEG, including, e.g., sleep-
stage classification , human-computer interface-based action
recognition, and seizure identification [13], [30]. These methods
employ unsupervised pre-training prior to supervised training
on ground-truth expert labels pertaining to the identification
task. The unsupervised pre-training objective involves different
augmentations of the same EEG segment and trains the trans-
former by maximizing the similarity of different augmentations
of the same segment, while simultaneously minimizing the
similarity with different segments.

All in all, the literature on automated seizure identification
often focuses on supervised machine learning methods. Despite
their success, these methods require expert labels indicating
EEG segments that contain seizures, which are difficult to
obtain due to the stochastic nature of EEG [6]. Meanwhile,
unsupervised machine learning methods that do not rely
on labeled data have not yet been widely explored. A few
methods applied shallow models for unsupervised seizure
identification, including K-means, hierarchical clustering, and
Gaussian mixture models, on both raw EEG [15], as well as
spatio-temporal features extracted from EEG [16], [17].

Recently, a couple of unsupervised DNN methods for seizure
identification on EEG have been proposed. You et al. (2020)
preprocess EEGs to extract time-frequency spectrogram images

and train a generative adversarial network (GAN) [31] on the
spectrograms that do not contain seizures. For each spectrogram
at testing time, they have to search for the latent GAN input
that leads to the smallest loss value and use the corresponding
generated spectrogram for seizure identification. As training
involves non-seizure activity, test spectrograms that significantly
differ from the spectrograms generated by the GAN are
successfully identified to contain seizures. Yıldız et al. (2022)
train a convolutional variational autoencoder (VAE) over raw
EEG, employing an objective tailored for suppressing EEG
artifacts. Unlike You et al. (2020), they identify seizures with
respect to the reconstruction errors at inference time.

We differ from the existing works by applying the first
fully-unsupervised transformer-based model on raw EEG. Our
architecture and training objective are particularly designed
for multivariate time-series analysis and do not require a
sophisticated minimax optimization such as GAN training.
The fundamental benefit of a transformer encoder over other
DNN architectures is that self-attention can selectively highlight
important input features and sequence segments, without relying
on sequence-aligned convolutions or slow recurrent modules
[32]; we also experimentally demonstrate this advantage against
the state-of-the-art VAE architecture in Section IV-E.

III. PROBLEM FORMULATION

We consider a dataset of N EEG recordings, each collected
from M electrode channels and consisting of T time points.
Formally, we denote each EEG recording by X(i) ∈ RT×M ,
for i ∈ [1, . . . , N ]. Our aim is to design an unsupervised
method that does not rely on ground-truth expert labels during
learning and can identify the existence of seizures in a given
EEG recording. To this end, we employ an autoencoder
architecture involving a transformer network encoder that is
uniquely designed for multivariate time-series data [21], such
as EEG. We note that our method naturally generalizes to EEG
recordings comprising different numbers of time points and
channels (see our preprocessing setup in Section IV-B).

A. Multivariate Time-Series Transformer

Our autoencoder architecture is based on a transformer
encoder and is depicted in Figure 1: the model learns to extract
and transform latent features from a given EEG recording
in order to reconstruct the stochastically-masked input [21].
Formally, the transformer encoder network receives a recording
X(i) ∈ RT×M , i ∈ [1, . . . , N ], and extracts latent features
Z(i) ∈ RT×D. The output layer applies an affine transformation
on Z(i) to reconstruct the recording as X̂(i) ∈ RT×M .

1) Transformer Encoder: Transformer encoder operations
begin with projecting a recording X(i) from M dimensions to
D dimensions via a trainable affine transformation P ∈ RM×D.
To preserve the ordering information of the input sequence, a
fully-trainable positional encoding E ∈ RT×D is added for
each input. The resulting latent features extracted from each
recording are thus: Z(i) = X(i)P +E.

Dimensional projection and positional encoding are followed
by the successive application of several transformer layers.
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Figure 1: Our autoencoder architecture. The transformer encoder network receives a recording X(i), and extracts latent features
Z(i). The output layer applies an affine transformation on Z(i) to reconstruct the recording as X̂(i) ∈ RT×M . During training,
a proportion of each channel is masked by setting the input values at masked time points (shaded in gray) to 0.

Each transformer layer consists of a multi-headed self-attention
(MSA) module, a stochastic dropout operation d̃ [33], batch
normalization (Norm) [34], and a fully-connected network
(FCN) consisting of two linear layers separated by a GELU [35]
activation, a non-linearity designed to be used in combination
with dropout and batch normalization. Formally, latent features
are updated by each transformer layer via:

Z(i) ← Norm
(
d̃
(

MSA(Z(i))
)
+Z(i)

)
,

Z(i) ← Norm
(
d̃
(

FCN(Z(i))
)
+Z(i)

)
. (1)

The summation of each latent feature with its transformation
is a skip connection that aids generalization [36], along with
batch normalization that has been shown improvement against
layer normalization for multivariate time-series analysis [21].

2) Multi-headed Self-attention Module: An MSA module
is designed to assign selective importance to latent features
extracted for each time point by the preceding layers of the
encoder [32]. Particularly, MSA contains trainable parameters
that capture the similarity between input features at different
time points via their query, key, and value representations.
Multiple attention heads enable adaptations to long-term
dependencies and capture relevance between segments of
multivariate data, without prior bias based on position [21].

Formally, at each time point t, the output representation is
computed via a weighted sum over the value vectors z

(i)
v,t′ ∈

RDv , t′ ∈ [1, . . . , T ], where the importance weight assigned
to the value vector at time t′ is computed as a dot-product
similarity between its corresponding key vector z

(i)
k,t′ ∈ RDq

and a query vector z(i)
q,t ∈ RDq at time t. As a result, given a

latent feature Z(i), a query Z
(i)
q = [z

(i)
q,1; . . . ; z

(i)
q,T ] ∈ RT×Dq ,

a key Z
(i)
k = [z

(i)
k,1; . . . ; z

(i)
k,T ] ∈ RT×Dq , and a value

Z
(i)
v = [z

(i)
v,1; . . . ; z

(i)
v,T ] ∈ RT×Dv are computed by applying

three different trainable affine transformations on Z(i). The
self-attention output for a single attention head (SA) is then

computed via a scaled dot-product:

SA(Z(i)) = softmax

(
Z

(i)
q Z

(i)⊤
k√

Dq

)
Z(i)

v , (2)

where softmax converts the similarity scores to a probability
distribution over the input sequence of length T . This operation
is performed in parallel for each of the H attention heads
(each with its own trainable transformations). The resulting
outputs SAh ∈ RT×Dv , h ∈ [1, . . . ,H] are first concatenated
and finally aggregated into a single representation through a
trainable linear transformation WA ∈ RHDv×D:

MSA(Z(i))=[SA1(Z
(i)) SA2(Z

(i)). . .SAH(Z(i))]WA. (3)

B. Reconstruction-Based Loss Function

We aim for the transformer model to extract discriminative
latent features that govern the generation of EEG recordings,
i.e., to model the input data distribution. To this end, we corrupt
each input sample by a novel masking strategy that is uniquely
designed for modeling multivariate time-series data such as
EEG [21]. We train the transformer model via a loss function
that minimizes the error between the original (unmasked)
recording X(i) and the corresponding reconstruction X̂(i).

Formally, a proportion r ∈ (0, 1) of each channel m ∈
{1, . . . ,M} in each EEG recording X(i) is dynamically
masked at the beginning of each training step by setting the
encoder input values at chosen time points to 0. The values
at each channel alternate between consecutive masked and un-
masked sequences. The number of masked time points follows
a geometric distribution with mean lm, while the number of
unmasked time points follows a geometric distribution with
mean lu = 1−r

r lm. This transition paradigm is also known as
an M/M/1 queue, in which the number of customers in a system
is geometrically distributed [37]. The resulting masking strategy
encourages the transformer to attend on time points preceding
and following the masked segments both in individual channels,
as well as across the aligned time points in other channels to
capture inter-channel dependencies, and has been found more



effective than other denoising strategies for downstream tasks,
including Bernoulli masking (c.f. Table II & [21]).

Finally, the reconstruction loss for end-to-end training of our
model is the mean-squared reconstruction error. Crucially, the
loss is computer over only the set of masked time pointsM =

{(t,m) |masked X
(i)
t,m, t ∈ {1, . . . , T},m ∈ {1, . . . ,M}}:

1

|M|
∑

(t,m)∈M

(X
(i)
t,m − X̂

(i)
t,m)2. (4)

C. Seizure Identification

We aim to employ the trained transformer to distinguish
between EEG recordings that contain seizures and those
which do not; this motivates us to pose unsupervised seizure
identification as an anomaly detection problem. Thus, we train
the transformer architecture on recordings that do not contain
seizures. This allows for the learned latent features to capture
non-seizure activity [19]. As the transformer is trained to model
non-seizure activity, recordings with no seizures are expected
to be reconstructed with low error in inference time. In contrast,
EEG recordings including seizure activity come from a different
distribution, and thus, the model naturally reconstructs such
input recordings with a relatively larger error; we use this
observation as an indicator for a seizure (c.f. Section IV-D).

We note that the exclusion of seizure recordings from the
training set does not constitute supervision or require any
special annotation, as the default states of patients and healthy
individuals alike are non-seizure, whose recordings can be
collected and kept separate from the recordings of seizure
episodes (which we only use for evaluating our method). In real-
life applications, EEG data with no seizure activity can be easily
augmented with recordings from healthy individuals, which
are trivially accessible compared to the ones from patients
experiencing seizures.

IV. EXPERIMENTS

A. Datasets

We evaluate our method on three publicly available EEG
datasets collected at the: (i) Massachusetts Institute of Technol-
ogy (MIT) and Boston Children’s Hospital [38] (ii) University
of Pennsylvania (UPenn) and Mayo Clinic [39], and (iii) Temple
University Hospital of Philadelphia (TUH) [40].

The MIT dataset contains EEG recordings acquired on the
scalp with 256 Hz sampling rate from a maximum of M = 38
channels. 198 seizure recordings were labeled w.r.t. their start
and end times. The total duration of non-seizure recordings is
40, 800 seconds and seizure recordings is 2889 seconds.

The UPenn dataset contains 1-second long EEG recordings
acquired intracranially at 500− 5000 Hz from a maximum of
M = 72 channels. The total duration of non-seizure recordings
is 7164 seconds and seizure recordings is 653 seconds.

The TUH dataset contains EEG recordings acquired on the
scalp with 250 Hz sampling rate from a maximum of M = 38
channels. 1229 seizure recordings were labeled w.r.t. their start
and end times. The total duration of non-seizure recordings is
49, 922 seconds and seizure recordings is 2600 seconds.

B. Preprocessing

EEG recordings are typically preprocessed to eliminate the
powerline noise at 60 Hz [19]. We first unify the sampling
rates in each dataset by downsampling to the smallest sampling
rate across all recordings. Then, we filter the recordings via a
4-th order Butterworth bandpass filter with range 0.5-50 Hz.

To construct samples with the same size, we extract sliding
windows over each recording, where each window contains T
time points and overlaps with its consecutive window by 50%.
We choose T based on the shortest seizure segment in each
dataset. In doing so, T = 1536 for MIT, T = 500 for UPenn,
and T = 462 for TUH. This process results in 13, 600 windows
with non-seizure activity and 963 windows with seizure activity
for MIT, 14, 329 windows with non-seizure activity and 1307
windows with seizure activity for UPenn, and 54, 264 windows
with non-seizure activity and 2826 windows with seizure
activity for TUH. In real-life applications, a minimum seizure
window length can be decided by clinical experts, as in UPenn
that directly provides 1 second-long seizure recordings.

Moreover, we aim to consistently form T ×M size windows,
while not disregarding any channels with potential seizure
activity. Thus, to construct samples with the same number of M
channels, we reuse data from other channels for the recordings
that have missing data at certain channels, compared to the
recording with the largest number of channels in each dataset.
Again, in real-life applications, clinical experts can determine
which channels to employ or discard for seizure identification.
Finally, we normalize windows by subtracting the mean and
dividing by the standard deviation across all windows to aid
the convergence of training [34].

C. Experiment Setup and Competing Methods

We partition all windows containing non-seizure and seizure
activity into training, validation, and test sets in a stratified
manner, allocating 60% for training, 20% for validation, and the
remaining 20% for testing. As baseline methods, we implement
shallow and deep learning models for both supervised and
unsupervised settings.

1) Unsupervised Learning Methods: For our method, we em-
ploy the transformer encoder architecture proposed by Vaswani
et al. (2017), with the modifications of fully-trainable positional
encoding, batch normalization and the same hyperparameters
suggested by Zerveas et al. (2021). We train the autoencoder
over only non-seizure training windows using the unsupervised
loss given by Eq. (4). We monitor the loss value computed
over the non-seizure windows in the validation set and use the
model that attains the lowest validation loss.

Following the literature on shallow unsupervised methods
[41], we reduce the dimension of all EEG windows in the test
set to 3 using the t-Distributed Stochastic Neighbor Embedding
(t-SNE) [42] algorithm, and apply K-means clustering [43]
on the resulting windows with two clusters indicating non-
seizure and seizure. Moreover, as an unsupervised deep learning
baseline, we train a state-of-the-art convolutional VAE [20].



Dataset Method Precision Recall Accuracy AUC

MIT Unsupervised Transformer 0.98± 0.003 0.9± 0.006 0.87± 0.006 0.94± 0.023

Unsupervised K-means 0.33± 0.008 0.5± 0.009 0.5± 0.009 0.59± 0.041

Unsupervised VAE 0.97± 0.003 0.75± 0.008 0.61± 0.009 0.61± 0.041

Supervised XGBoost 0.98± 0.003 0.8± 0.007 0.8± 0.007 0.88± 0.031

Supervised ROCKET 0.98± 0.003 0.74± 0.008 0.78± 0.008 0.86± 0.032

Supervised Transformer 0.98± 0.003 0.83± 0.007 0.83± 0.007 0.88± 0.031

Pre-trained 50% Supervised Transformer 0.97± 0.003 0.72± 0.008 0.63± 0.009 0.66± 0.021

Pre-trained 100% Supervised Transformer 0 .99 ± 0 .002 0 .98 ± 0 .003 0 .94 ± 0 .005 0 .97 ± 0 .017

UPenn Unsupervised Transformer 0.88± 0.01 0.76± 0.013 0.68± 0.014 0.73± 0.027

Unsupervised K-means 0.33± 0.014 0.5± 0.015 0.5± 0.015 0.56± 0.028

Unsupervised VAE 0.8± 0.012 0.5± 0.015 0.49± 0.015 0.47± 0.027

Supervised XGBoost 0.87± 0.01 0.62± 0.015 0.6± 0.015 0.65± 0.028

Supervised ROCKET 0.87± 0.01 0.67± 0.014 0.62± 0.015 0.67± 0.028

Supervised Transformer 0.87± 0.01 0.69± 0.014 0.62± 0.015 0.64± 0.028

Pre-trained 50% Supervised Transformer 0.86± 0.011 0.77± 0.013 0.63± 0.015 0.64± 0.032

Pre-trained 100% Supervised Transformer 0 .92 ± 0 .008 0 .85 ± 0 .011 0 .82 ± 0 .012 0 .89 ± 0 .02

TUH Unsupervised Transformer 0.92± 0.005 0.57± 0.009 0.61± 0.009 0.57± 0.013

Unsupervised K-means 0.17± 0.007 0.5± 0.009 0.35± 0.008 0.57± 0.013

Unsupervised VAE 0 .93 ± 0 .005 0 .86 ± 0 .006 0 .83 ± 0 .007 0 .86 ± 0 .009

Supervised XGBoost 0.93± 0.005 0.73± 0.008 0.71± 0.008 0.78± 0.011

Supervised ROCKET 0.93± 0.005 0.7± 0.008 0.66± 0.008 0.74± 0.012

Supervised Transformer 0.92± 0.005 0.37± 0.009 0.54± 0.009 0.52± 0.012

Pre-trained 50% Supervised Transformer 0.94± 0.005 0.61± 0.009 0.75± 0.008 0.71± 0.025

Pre-trained 100% Supervised Transformer 0.93± 0.005 0.66± 0.008 0.7± 0.008 0.72± 0.012

Table I: Seizure identification performance metrics and confidence intervals on UPenn, MIT and TUH. We compare our
transformer-based unsupervised identification method (in bold) with unsupervised methods comprising VAE and t-SNE followed
by K-means clustering, as well as supervised methods comprising XGBoost, ROCKET, and the same transformer architecture
trained via supervised and pre-trained supervised learning. Best performance for each dataset are in italics.

2) Supervised Learning Methods: First, we employ the same
transformer encoder architecture described in Section III-A
and map the latent features learned from each window to
a binary prediction. In doing so, we concatenate all latent
features corresponding to all time points of each window into
a single vector and apply a fully-connected layer comprising a
scalar output with sigmoid activation. We train the resulting
architecture via cross-entropy loss over all training windows,
employing the same hyperparameters found optimal by Zerveas
et al. (2021). To combat overfitting due to class imbalance in
supervised learning, we oversample and augment the seizure
windows in training via random reversing and drifting. We
monitor the F1-score computed over the validation set and use
the model that attains the best validation score.

Moreover, we train state-of-the-art shallow models XGBoost
[44] and ROCKET [45] over the supervised training set.
XGBoost is a decision-tree classifier using gradient boosting for
ensembling. ROCKET transforms time-series using 500 random
convolutional kernels and uses the extracted features to train a
ridge regression classifier. Ridge regression hyperparameter is
varied in [10−3, 103] and best hyperparameter is determined

w.r.t. the accuracy over the validation set.
3) Pre-trained Supervised Learning: Finally, we combine

the transformer-based seizure identification methods via unsu-
pervised pre-training and supervised fine-tuning [21]. Following
the unsupervised approach described in Section IV-C1, we first
pre-train the transformer encoder over non-seizure training
windows. Having initialized its weights accordingly, we then
fine-tune the model via both non-seizure and seizure training
windows, using the same setup described in Section IV-C2.

D. Evaluation Metrics

To evaluate the seizure identification performance of our
approach, as well as the VAE baseline, we use the mean
absolute error over the time points and electrode channels
in each EEG window from the test set as the corresponding
seizure prediction score. For all supervised competing methods,
we use the traditional prediction score for inference.

For all competing methods described in Section IV-C, we
report AUC for distinguishing seizure vs. non-seizure windows
in the test set. To compute binary decision metrics, we threshold
the prediction score of each window at the value for which the
geometric mean of recall and true negative rate is maximal [46].
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(c) Falsely Identified Seizure Windows (False Negative)
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Figure 2: Example EEG windows, corresponding seizure identifications and self-attention weights on UPenn. First and third
rows contain example windows of true positive, true negative, false negative, and false positive identifications, respectively.
Second and fourth rows contain the corresponding self-attention weight heatmaps computed by the transformer architecture,
where darker colors indicate higher importance. For each window, we visualize the channel with the largest reconstruction error.

Using the respective threshold, we calculate class-weighted
precision and recall, as well as balanced accuracy for binary
identification of seizure vs. non-seizure windows in the test set,
considering the imbalanced distribution between the two. In
real-life applications, decision thresholds may be determined
by clinical experts with respect to the desired trade-off between
false positives and negatives [47].

We report all metrics along with the 95% confidence
intervals, which are computed as 1.96 × σA, where σ2

A is
the variance for metric A. Variance for AUC is computed by:

σ2
A=

1

mn

(
A(1−A)+(m−1)(Px−A2)+(n−1)(Py−A2)

)
, (5)

where Px = A/(2−A), Py = 2A2/(1+A), and m, n are the
number of seizure and non-seizure windows, respectively [48].
Variance for other metrics are computed by:

σ2
A = A(1−A)/(m+ n). (6)

E. Results and Discussion

1) Seizure Identification Performance: Table I shows the
seizure identification performance of our transformer-based

unsupervised method vs. supervised and pre-trained supervised
transformers, XGBoost, ROCKET, VAE, and t-SNE followed
by K-means clustering over all datasets. Our novel transformer-
based anomaly detection method establishes a dramatic im-
provement among all unsupervised methods, by successfully
distinguishing between non-seizure vs. seizure windows with up
to 0.94 AUC and outperforming its state-of-the-art deep learning
counterpart VAE by up to 33% AUC on MIT. Clustering on raw
EEG windows cannot capture the complex evolution of EEG
and predicts all windows as non-seizure. These observations
demonstrate the benefit of the transformer architecture for
unsupervised anomaly detection in our setting.

Crucially, despite the lack of seizure labels during training,
our unsupervised anomaly detection approach leads to signifi-
cantly better seizure identification than all purely supervised
learning baselines and the pre-trained transformer fine-tuned
with 50% of the training labels over UPenn and MIT, by
up to 16% recall, 9% accuracy, and 9% AUC. Moreover,
unlike supervised learning, class imbalance strongly biases
supervised models towards non-seizure predictions and hinders
generalization over the distribution of held-out test samples.



As a result, unsupervised anomaly detection via transformers
establishes a consistently better balance between precision and
recall than supervised learning and further demonstrates its
benefit in learning from imbalanced datasets such as ours.

The TUH dataset is particularly challenging by being a
compilation of several EEG databases collected over years
from patients with vast variations in demographic and medical
backgrounds [40], compared to self-contained UPenn and MIT
datasets collected from only 8 and 24 patients, respectively. In
this case, our unsupervised transformer still fares significantly
better than the purely supervised transformer, while unsu-
pervised VAE outperforms all supervised learning baselines,
including the pre-trained transformer. These observations
further motivate unsupervised learning for our task.

As expected, the computationally expensive transformer
model, which has first undergone unsupervised pre-training
and then supervised fine-tuning with all training labels, outper-
forms both purely supervised as well as purely unsupervised
transformer models (the latter by a smaller margin). However,
our unsupervised anomaly detection method does not require
ground-truth seizure labels during training as a crucial advan-
tage, while still leading to successful seizure identification.

2) Seizure Identification Examples: We visualize example
EEG windows from UPenn and the corresponding seizure
identifications of the unsupervised transformer in the first and
third rows of Figure 2, selecting the channel with the largest
mean reconstruction error for each window. Agreeing with
the clinical description of seizures, true seizure windows in
Figure 2a contain high-frequency waves with large amplitudes
[2]. Meanwhile, true non-seizure windows in Fig. 2b attain
significantly less amplitude changes and spikes compared to
true positive windows. Note that the seizure patterns cannot
be identified w.r.t. only large amplitude or high frequency,
motivating a more sophisticated approach such as ours. For
instance, non-seizure windows in Fig. 2d have a larger
amplitude range than the seizure windows in Figure 2c, while
the seizure windows in Fig. 2c contain similar spikes to the non-
seizure windows in Figure 2b w.r.t. amplitude and frequency.

3) Benefit of Self-Attention: We visualize the self-attention
weights computed by the last encoder layer of the unsupervised
transformer on example EEG windows from UPenn as 2D
heatmaps in the second and fourth rows of Figure 2. For each
time point along the horizontal axis of each heatmap, self-
attention weights (c.f. Equation (3)) from other time points
are indicated along the vertical axis. Darker heatmap colors
correspond to larger weights and, thus, higher importance.

It appears that the transformer model within our unsupervised
identification method can successfully learn to pay more
attention to seizure patterns including high-frequency spikes
and waves evolving with large amplitudes [2]. Moreover,
when the model predicts the existence of seizures, it shows
patterns of focused attention, containing only few time points
with large weights (Figures 2a and 2d), while windows
identified as non-seizure (Figures 2b and 2c) lead to much
more evenly distributed attention. These observations indicate
that employing a transformer architecture with self-attention

Dataset Method Precision Recall Accuracy AUC
MIT Geometric (Ours) 0.98 0.9 0.87 0.94

Bernoulli 0.98 0.85 0.85 0.9
UPenn Geometric (Ours) 0.88 0.76 0.68 0.73

Bernoulli 0.86 0.72 0.65 0.72
TUH Geometric (Ours) 0.92 0.57 0.61 0.57

Bernoulli 0.93 0.4 0.59 0.54

Table II: Effect of masking strategy on seizure identification.

can improve both performance, as well as explainability of
seizure identification decisions, by underlining, e.g., spike-wave
discharges that are indicative of seizures [2].

4) Effect of Masking Strategy: Table II shows the seizure
identification performance of training with our geometric
masking strategy against masking each time point independently
at random with a Bernoulli distribution. Our approach of un-
supervised training with geometric masking consistently leads
to better performance than Bernoulli masking, demonstrating
its benefit in modeling multivariate data such as EEG.

V. CONCLUSION

We propose a fully-unsupervised transformer-based method
for seizure identification on raw EEG. Our approach involves
training an autoencoder involving a transformer encoder to re-
construct stochastically-masked EEG recordings of non-seizure
activity, and thus, modeling a non-seizure data distribution
without any ground-truth labels. Since EEG recordings of
seizures belong to a different distribution, they are identified
based on the higher reconstruction errors attained at inference
time. Our method can successfully distinguish between non-
seizure and seizure windows and can even achieve significantly
better seizure identification performance than state-of-the-art
supervised time-series methods, including its purely supervised
transformer-based counterpart. Generalizing our method to
other applications involving anomalous activity detection on
multivariate time-series data is a promising future direction.

Our unsupervised approach can significantly alleviate the
burden on clinical experts regarding laborious and difficult EEG
inspections to provide labels indicating segments that contain
seizures. Furthermore, if automated identification performance
meets clinical requirements, our method can aid availability
of seizure diagnoses for the wider public, especially in areas
where access to well-trained healthcare professionals is limited.
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