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ABSTRACT
Precisionmedicine strives to deliver improved care based on genetic
patient information. Towards this end, it is crucial to find effective
data representations on which to perform matching and inference
operations. We develop and evaluate a generative adversarial neural
network (GAN) approach to representation learning with the goal
of patient-centric literature retrieval and treatment recommenda-
tion in precision oncology. Several large-scale corpora including the
COSMIC Cancer Gene Census, COSMIC Mutation Data, Genomic
Data Commons (GDC) and 26M MEDLINE abstracts are used to
train GANs for synthesizing genetic mutation patterns that likely
correspond to patient properties such as their demographics or can-
cer type. The introduction of GANs into the literature retrieval and
treatment recommendation process results in significant improve-
ments in performance by increasing the recall of a range of methods
at stable precision. Finally, we propose a method to discover novel
gene-gene interaction hypotheses to guide future research.
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1 INTRODUCTION
Precision medicine is an active field of study that aims to use ge-
netic information in finding effective personalized treatments for
patients. The term “precision oncology” is used to describe diverse
strategies in cancer medicine ranging from the use of targeted thera-
pies in general to employing data from next-generation sequencing
to select therapy for a person independent of cancer type. Due
to the popularity of the novel paradigm, the volume of annually
published scholarly precision oncology articles has been growing
rapidly in recent years. While this considerable amount of scientific
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research holds a rich and ever increasing well of knowledge, its
sheer scale makes it intractable for manual inspection andmandates
the development of dedicated automatic retrieval and reasoning
facilities [13, 17]. In this context, existing methods [12, 16] rely on
exact term matching of gene names in patient records and litera-
ture. While offering high precision, these approaches are known to
miss many potentially relevant matches that are described using
different, synonymous or related wording.

This paper proposes to address this issue by using a generative
adversarial network (GAN) [7] in the precision oncology domain.
The strength of the neural network approach lies in its ability to
generalize from term identity (e.g., individual gene names) to term
semantics (e.g., classes of genes with comparable functional proper-
ties) [9, 18]. Based on patient demographics as well as information
regarding the type of tumor and its genetic composition, we investi-
gate three use cases of key clinical relevance: (1) We rank scholarly
articles as well as clinical trials with respect to their relevance for
the patient. (2) We propose the most promising means of treatment
for the patient’s condition. (3) We discover new gene-gene interac-
tions that hold significant potential for prospective investigation
but that are not currently discussed in the literature.

Our experiments are based on all 26 million Medline abstracts,
the COSMIC [4] and GDC [10] databases for model training as well
as 30 synthetic oncology patient descriptions from MD Anderson
Cancer Center for performance evaluation [15]. The results suggest
a significant improvement in retrieval and treatment suggestion
performance over state-of-the-art term-based models while, at the
same time, enabling altogether new use cases such as the discovery
of previously unseen gene-gene interactions.

The remainder of this paper is structured as follows: After list-
ing the used data sources in Section 2, we begin by discussing the
formal background of the GAN framework as well as our proposed
literature retrieval, treatment prediction and interaction discov-
ery schemes. Subsequently, in Section 4, we assess their relative
performance on a set of held-out test patient cases. Finally, we
conclude by discussing the observed merit of the method as well as
its implications for future inquiry.

2 DATASETS
TREC Precision Medicine. In collaboration with precision oncol-
ogists at MD Anderson Cancer Center, the TREC 2017 Precision
Medicine track [15] made 30 synthetic oncology patients as well as
their demographic and genetic information available in the context
of a patient-centric retrieval benchmarking effort. For these 30 pa-
tients, a total of 22,642 Medline abstracts and 13,441 clinical trial
descriptions have been manually annotated in terms of relevance
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and suitability for clinical use. These patients form the centerpiece
of our investigation for which the methods developed in the fol-
lowing sections aim at recommending specifically personalized
literature. The full database of reference patients is available from
(http://www.trec-cds.org/).
COSMIC Cancer Gene Census. In order to study gene similari-
ties, we need to first identify a relevant range of genes to be included
in our system. The Catalogue Of Somatic Mutations In Cancer (COS-
MIC) curates the Cancer Gene Census (CGC), a list of genes related
to cancer genesis [4, 6]. The CGC lists official names of cancer
genes as well as a list of synonyms which we use to extract gene
occurrences from raw text. In total, 614 cancer-related genes are
listed, leading to 188,191 possible gene pairings.
MEDLINE Abstracts. To further reduce this theoretical maximum
to the number of gene pairs, we parse all scientific abstracts in the
Medline database for cancer gene occurrences via the gene2pubmed
list [14]. We count gene co-occurrences in this list and empirically
define a minimal occurrence cut-off (ncutoff = 10) resulting in 9,500
unique pairs of genes that are retained for model training.
COSMICMutationData.As a second source of gene co-occurrence
data, we use the COSMICmutation data, a dataset with DNA screens
of tumor cells [3]. Similarly to the Medline articles, we count co-
occurrences in patient DNA screens and set an occurrence cutoff
(ncutoff = 50) for gene pairs, yielding another 13,400 training pairs.
GDC Database. Finally, in order to associate genetic variation to
effective treatments, we access the Genomic Data Commons (GDC)
database curated by the National Cancer Institute [10]. This data-
base contains information on over 30,000 cancer patients. Through
several APIs, we access information on age, gender, mutations and
treatments, including information on administered drugs, which
yields data on approximately 6,000 cancer patients with information
across all categories.

3 METHODS
A GAN consists of two neural networks, a generator G and a dis-
criminator D, which are connected via an adversary game. Given
a dataset, the generator’s goal is to mimic real data, while the dis-
criminator aims at differentiating real from synthetic data. First,
we train a GAN on gene pairs which are likely to co-occur (either
within a scholarly article or within the same patient). While the
generator learns to produce plausible gene pairs, the discriminator
learns to differentiate observed from synthetic gene pairs, which
we then use to compare gene mutations in a patient record to those
found in the literature. Alternatively, we use a conditional GAN
for treatment prediction. In this configuration, the data is split into
conditions (patient information) and targets (treatments) and the
generator is tasked to output a suitable target for a given condi-
tion, whereas the discriminator assesses the compatibility of the
condition with the target. Figure 1 schematically illustrates these
processing pipelines.

3.1 Pairwise Gene Compatibility
This section presents a GANmethod to discriminating possible gene
pairs for estimating patient-document compatibility. We modify
the existing architecture of the medGAN model [2] to learn gene
mutation similarities from co-occurrences.

Figure 1: Scoring schemes of patient-document pairs for
gene similarity and treatment adequacy.

The discriminator and generator neural networks play amin-max
game where the discriminator’s goal is to assign scores of 1 to real
data xr eal and 0 to synthetic data xf ake . Meanwhile, the generator
aims at deceiving the discriminator. This game is translated to loss
functions used for generator and discriminator network training as
follows:

lossG = − log(D(xf ake )) and
lossD = − log(D(xr eal )) − log(1 − D(xf ake )).

Our goal is to measure the similarity of two gene mutations with
the discriminator’s valuation of the pair. The training data, there-
fore, encodes mutation pairs as two-hot vectors with dimensions
corresponding to the number of considered genes:

x(genei , genej ) = (0, . . . , 0, 1
i
, 0, . . . , 0, 1

j
, 0, . . . , 0) ∈ Rnдenes .

To avoid mode collapse [7], the generator is configured to output
an entire batch of samples at each training step. The discriminator
is exposed to one sample along with the batch average at a time
forcing the generator to establish a data distribution similar to real
data, which prevents mode collapse. However, now the discrimina-
tor critically depends on the disclosure of batch averages. For the
task of evaluating gene pairs from queries and documents, there is
no sensible definition of such batch averages. As a consequence, in
addition to batch-training, we introduce an online training scheme.
In this mode, the discriminator receives only a single sample from
the batch with the batch average set to zero along with a binary flag
indicating the training mode. We train the GAN with both modes
in parallel by adding the losses, such that:

loss = lossonline + lossbatch .

Empirically, we find that a discriminator/generator training ratio
of 1/5 to yield reliable results. With this setup, the discriminator
trains once, while the generator is trained five times. In order to
improve stability, we apply shortcut-connections to the generator
and L2-regularization losses as well as dropout to the autoencoder
and discriminator. Finally, we introduce a metric to rank patient-
document pairs. For this purpose, we denote patients by p and
documents by d and look for mentions of genes д in both. We
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introduce four aggregation scores:

smean,id = mean(s) D(x(дi ,дi )) = 1,
smean = mean(s) D(x(дi ,дi )) = 0,
smin = min(s) D(x(дi ,дi )) = 0 and
smax = max(s) D(x(дi ,дi )) = 0, where

s = {D(x(дp ,дd )) | ∀дp ∈ p,∀дd ∈ d}

is the set of pairwise similarities between genes in the query and
genes in the document. We vary the value for self-similarity (дp =
дd ) to incorporate exact and semantic term matching separately.
We summarize these scores in an aggregate vector sдene for later
use

sдene = (smean,id , smean , smin , smax ).

3.2 Treatment Adequacy
In addition to gene expression similarity, we can further model the
adequacy of treatments mentioned in the literature for the patient
at hand. In this setting, we use the generator and discriminator
separately resulting in two scores, following the scheme introduced
earlier in this section. The conditional GAN losses are obtained by
extending the discriminator’s and generator’s arguments with the
condition vector c, corresponding to the patient information vector.
In this setup, we pre-train the generator like a standalone feed-
forward network to predict treatments from patient information
and the discriminator to differentiate between real and synthetic
vectors. While we apply the main training loss to the discriminator,
the generator loss during pre-training (with noise vector ®z set to 0)
is given by the squared difference between output and label:

lossG,pre = ∥x −G(0, c)∥2 .

In contrast to the gene similarity GAN, the conditions c and
target vectors x are no longer restricted to two-hot vectors, but can
contain real numbers for patient information (e.g., age, weight, etc.)
or n-hot entries in case of treatment categories (one patient can
receive several treatments). Furthermore, the condition restricts
the generator sufficiently, such that mode collapse poses no threat
and batch mode training can be omitted.

We use the generator and discriminator separately to score pa-
tient and document pairs. First, we compare the generator output
conditioned on the patient information in the query with the docu-
ment treatment vector using cosine similarity to obtain a generator
score. Second, we use the discriminator to evaluate the query con-
dition and the document treatment vector for compatibility. The
two scores can be written as:

sдen = cos(G(z, cq ), xd ) and
sdisc = D(cq , xd ).

As a final step, we combine both scores in a score vector str eat
for later score fusion:

str eat = (sдen , sdisc ).

3.3 Score Fusion
We describe the process of fusing all obtained scores into a single
value used to rank documents with the help of manually anno-
tated query document pairs. The objective is to maximize the com-
monly applied normalized Discounted Cumulative Gain (nDCG)
metric [11]. To leverage exact term matching, we enrich the GAN
scores with the score of a vector space model (VSM) based on TF-
IDF scores. As a first step towards document scoring, we combine
all score values into a single vector

s = svsm ⊕ sдene ⊕ str eat .

Then we fuse all scores in a weighted sum with a weight vector w
that maximizes the nDCG score

sf used = s ·w, where

w = argmax
w

[
nDCG(sf used )

]
.

4 RESULTS
The literature retrieval performance of the presented models is
assessed on TREC 2017 precision medicine data. Under this task,
30 model oncology patients are to be associated with a ranking
of relevant biomedical literature that can help in devising treat-
ments, as well as with clinical trials for which the patient is eligible.
Following the original benchmark’s guidelines, we measure the
performance of each run in terms of inferred nDCG [19], precision
at 10 and 30 retrieved documents, R-precision for abstract retrieval
and precision at 5, 10, 15 and 30 retrieved documents for clinical
trial retrieval. In both settings, we also report recall at 10 retrieved
documents. We compare the standard TF-IDF VSM to a variant
enriched with GAN scores.

The results in Table 1 show that, in both settings and across all
evaluation metrics, additional GAN scores considerably improve
the absolute retrieval performance. Due to the low sample size of
only 30 instances, statistical significance of performance differences
(measured by a paired t-test at p < 5% and denoted by an asterisk)
can only be attained for some of the metrics.

Table 1: Patient-centric retrieval results.

Abstracts infNDCG R-prec P@10 P@30 S@10

VSM 0.3085 0.2130 0.3700 0.3100 0.0380
VSM+GAN 0.3430* 0.2281* 0.4000 0.3311 0.0484

Trials P@5 P@10 P@15 P@30 S@10

VSM 0.3867 0.3333 0.3111 0.2600 0.1452
VSM+GAN 0.3933 0.3667 0.3667* 0.2544 0.1718*

Turning from literature retrieval to a core classification task, we
assess the method’s performance at associating cancer types and
genomic variants with their appropriate treatments. From the GDC
database, we retrieve two condition datasets (patient information
with and without mutation information) and two treatment datasets
(with and without administered medication). We examine for all
combinations of datasets the ability of the model to predict the
correct treatments. The results are presented in Table 2. Within
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each setting, statistical significance between a standard term-based
single-class support vector classifier and an alternative that addi-
tionally has access to GAN output is measured by a paired t-test at
p < 5% and denoted by an asterisk. While we observe reasonable
performance at predicting general treatments such as radiation,
chemotherapy or surgery, the task of also predicting administered
drugs is difficult with the available training data. In this difficult
setting, the introduction of GAN information increases recall by up
to 90% while retaining undiminished precision. In the easier setting
of general treatment prediction, this effect is negligible.

Table 2: Experimental results of treatment prediction on
a held-out validation set. Term-based SVC compared to a
model additionally enriched by GAN output.

Condition Target Model Recall Precision
Pat. Info. Treat. + SVC 0.122 0.985

Med. SVC+GAN 0.209* 0.972

Pat. Info. + Treat. + SVC 0.135 0.983
Genes Med. SVC+GAN 0.208* 0.969

Pat. Info. Treat. SVC 0.481 0.866
SVC+GAN 0.474 0.852

Pat. Info. + Treat. SVC 0.505 0.856
Genes SVC+GAN 0.508 0.839

Up to this point, we have been using the GAN primarily as a
means of estimating gene similarity or treatment compatibility. We
can, however, also use the discriminator to explore previously un-
seen, yet likely, co-occurrence patterns of gene mentions. Recall
that we employed an inclusion cut-off to gene co-occurrence fre-
quency. Inspecting the discriminator rating of gene pairs beyond
the cut-off frequency in the COSMIC dataset, we observe that “false-
positive” pairs are gathered closely to the cut-off as presented in
Figure 2.

In other words, the unseen pairs suggested by the discriminator
are plausible and, in fact, have occurred in authentic patients but
were merely excluded from the training process due to their lower
prevalence. In the following, we will briefly discuss three concrete
examples of gene pairs that were never present in the method’s
training data but that have nevertheless correctly been discovered.
BRCA1/WRN. BRCA1 encodes a well-studied breast cancer sus-
ceptibility protein, the production of which has been shown to be
affected by the presence of the Werner Syndrome encoded onWRN.
SETD2/EZH2. Both of these are histone-modifying genes that
interact in the expression of lymphoma.
COL1A1/FBXW7.While at first glance the osteogenesis-related
COL1A1 and FBXW7 (primarily associated with ovarian and breast
cancer) are unconnected, recent research has found overexpression
of FBXW7 in C2C12 cells to result in down-regulation of Col1A1
mRNA.

While these examples are of mostly anecdotal value, they high-
light the potential of generative models in gene interaction hypoth-
esis generation.
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Figure 2: False positives classification of a discriminator
trained on the COSMIC dataset.

5 CONCLUSION
This paper presents an adversarial learning approach to information
retrieval in precision oncology1. Using data from four databases,
we train two GAN architectures for the task of scoring patient-
document pairs in terms of similarity of genetic expression as well
as adequacy of discussed treatments.

Throughout our experiments with the proposed GAN architec-
ture, we see consistent performance improvements in terms of
recall. Both in the literature retrieval [1, 5, 8] as well as treatment
prediction applications precision is retained at unchanged levels
while recall significantly increases when introducing neural net-
work output.

Clearly, the governing limitations of the present early-stage
investigation are collection size as well as depth. Especially in
case of the interaction discovery scenario, a prospective study is
required to truly explore the accuracy and informativeness of novel
interaction candidates. While this particular application is an early
outlook, it holds considerable potential for identifying promising
new directions for future inquiry, demonstrating a paradigm under
which generative machine learning methods can help to chart the
vast decision spaces faced by clinical researchers.
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