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ABSTRACT
In clinical care, obtaining a correct diagnosis is the first step towards
successful treatment and, ultimately, recovery. Depending on the
complexity of the case, the diagnostic phase can be lengthy and
ridden with errors and delays. Such errors have a high likelihood
to cause patients severe harm or even lead to their death and are
estimated to cost the U.S. healthcare system several hundred billion
dollars each year.

To avoid diagnostic errors, physicians increasingly rely on diag-
nostic decision support systems drawing from heuristics, historic
cases, textbooks, clinical guidelines and scholarly biomedical litera-
ture. The evaluation of such systems, however, is often conducted
in an ad-hoc fashion, using non-transparent methodology, and
proprietary data.

This paper presents DC3, a collection of 31 extremely difficult
diagnostic case challenges, manually compiled and solved by clin-
ical experts. For each case, we present a number of temporally
ordered physician-generated observations alongside the eventually
confirmed true diagnosis. We additionally provide inferred dense
relevance judgments for these cases among the PubMed collection
of 27 million scholarly biomedical articles.
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1 INTRODUCTION
Diagnostic errors refer to the failure to establish an accurate and
timely explanation of the patient’s health problem(s) or to com-
municate that explanation to the patient [13]. With relative shares
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of up to 40%, several studies report diagnostic errors to consti-
tute the largest and most impactful source of avoidable primary
care error [15, 16, 21], leading to the most considerable share of
claims [3, 18, 20] against primary care physicians. In the USA, an
annual economic damage of hundreds of billions (a sizable portion
of the country’s overall health spendings) is attributed to diag-
nostic errors [11]. Given the key importance of correctness and
timeliness of primary care diagnosis, a large body of work has been
investigating systematic reasons for misdiagnoses in this setting.
Numerous studies list low disease prevalence as one of the top
causes of diagnostic errors and delays in primary care [8, 17, 20],
as uncommon diagnoses may be overshadowed by more preva-
lent ones in the cognitive diagnostic process [7, 17]. In an effort to
improve patient safety, there are frequent calls for more effective
diagnostic processes in primary care [10, 27], involving a greater
utilization of electronic health record (EHR) and clinical decision
support systems [14]. Complex patients with non-specific presen-
tations, multiple co-morbidities, and rare conditions are assumed
to be at an especially high risk of receiving a delayed or inaccurate
diagnosis [13].

Clinical decision support systems aim to help health profession-
als in addressing particularly challenging diagnosis or treatment
needs [2, 4, 12, 26]. In order to assess the accuracy of such systems,
annotated examples of patient case information are required. To
date, there are only few such resources available to researchers. As
a consequence, many clinical decision support system evaluation
campaigns rely on small, outdated or proprietary sources of data,
making their findings difficult to verify and reproduce.

This paper presents DC3, a collection of 31 extremely difficult
diagnostic case challenges, that were manually compiled and solved
by clinical experts. For each case, there are a number of temporally
ordered physician-generated observations alongside the eventually
confirmed true diagnosis. We additionally provide inferred dense
relevance judgments for these cases among the PubMed collection
of 27 million scholarly biomedical articles.

2 COMPARISON TO EXISTING COLLECTIONS
The vast majority of clinical decision support systems are trained
and evaluated on proprietary samples of patient data that, for rea-
sons of confidentiality, cannot be released to the research commu-
nity. There are, however, a number of openly available collections
that deserve mentioning.

TRECCDS.The TRECClinical Decision Support (CDS) track [19]
was run from 2014 to 2016 and tasked participating systems to
retrieve biomedical literature in response to 90 natural-language
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patient descriptions. The patients stem from general intensive care
populations with relatively common indications. For the majority of
these patients no explicit target diagnosis information is available.
All patient descriptions are single-shot narratives in the style of an
anamnesis without temporally ordered findings.

CLEF eHealth. Similar to the TREC CDS track, the 2013 to 2015
editions of CLEF’s eHealth challenge [23] offered a patient-centric
information retrieval task. Given a minimal patient profile, the
participants were tasked with retrieving relevant literature related
to the case.

MIMIC-III. The MIMIC critical care database [6] contains elec-
tronic records of 59,000 intensive care admissions collected between
the years of 2001 and 2012. Each admission specifies a list of di-
agnostic and procedural ICD codes that were designed for billing
purposes but can be used as targets for diagnostic decision support.
Given the intensive care domain, the range of observed diagnoses
is limited in comparison to the complex cases outlined here.

i2b2. The i2b2 initiative has been launching a number of classi-
fication and information extraction benchmarking campaigns for
which annotated corpora of de-identified patient records were pro-
vided. Most studied tasks focus on extracting patient properties
such as smoker status [25] or obesity [24] that are of only limited
interest in the diagnostic decision support use case. Others are
limited to a single class of diagnoses such as heart disease [22] and
do not lend themselves to wide-coverage primary care research.

To the best of our knowledge, at the time of writing this paper,
there exists no publicly available dataset of challenging authentic
diagnostic episodes that additionally provide both confirmed diag-
noses as well as dense query-document relevance judgments for a
realistically-sized document collection. DC3 aims to close this gap.

3 DATASET DETAILS
The dataset compiles 31 especially challenging diagnostic cases
encountered at Massachusetts General Hospital (MGH) in Boston,
MA between the years 2013 and 2018.

3.1 Cases
Each case is described in a number of topically coherent paragraphs
that correspond to the sections usually found in case notes. For the
purpose of data extraction, we assume each paragraph to denote an
episode in a health record/note entry. Example paragraphs include
presenting complaint, history of presenting complaint, examination
or investigation and may have been authored by changing physi-
cians (e.g., the first note describes the patient’s anamnesis taken by
the emergency department’s staff while the following note might
be written by a radiologist, discussing the findings of a CT scan,
etc). The cases featured in this corpus are all complex and difficult.
While a good proportion of the featured diagnoses are rather un-
common in developed-world hospitals such as MGH (e.g., 16 cases
of infectious diseases, or a lead poisoning), they can be more fre-
quently observed in large parts of the developing world. Aside from
low-prevalence, many cases have multiple correct diagnoses that
jointly account for the patient’s symptoms. We represent diagnoses
in terms of the corresponding concept unique identifiers (CUI) of
the Unified Medical Language System (UMLS). The average case
in the collection has 6.9 target CUIs. Finally, we annotate the 2018

snapshot of the National Library of Medicine’s PubMed database,
identifying all papers whose abstracts mention any of the target
diagnoses. In order to achieve this, we rely on a proprietary medical
named entity recognition system. Any paper whose title or abstract
mention the target diagnoses of a case is considered relevant for
that case. The assumption here is that presenting a physician with
a paper mentioning the correct diagnosis for the current patient
will bring that diagnosis to their attention and thereby increase
the chance of them testing for and eventually confirming it. Unlike
many existing IR benchmarking collections, that rely on pooled
manual relevance assessment, this approach results in dense1 rele-
vance labels. The median number of relevant documents per case is
3,597. Especially for outlier cases with many target diagnoses, such
numbers are much higher than what is observed in typical Web
search collections with only partial relevance labels. Table 1 gives
a complete overview of all cases. We did not perform any manual
sub-selection of cases and, instead, included all currently published
MGH case challenges.

The narrative content of the case notes is written by the treating
physicians of the original cases and is composed to reflect the
temporal order of discoveries, hypotheses and tests performed, but
does not directly reveal the target diagnosis.

3.2 Distribution Format
All cases presented in DC3 are originally published in the New
England Journal of Medicine’s Case Challenge section. The copy-
right remains with them and we do not redistribute any of the case
content directly. Instead, we provide the research community with
a convenient Python script2 that downloads the publicly available
case challenges and organizes them in the form of a JSON file. Fig-
ure 1 shows an example of the resulting format. Additionally, we
collected inferred dense relevance judgments for the 2018 snapshot
of the National Library of Medicine’s PubMed database of 27 mil-
lion scholarly biomedical articles. These relevance judgments are
provided in standard trec_eval format.

4 TASKS & BASELINE PERFORMANCE
In this section, we will describe a range of possible experiments on
the DC3 collection. We begin with a patient-centric information
retrieval task [1, 9] in which we measure the ranking performance
of models that take the case description as a query and retrieve
scholarly literature articles conducive to making the correct di-
agnosis. Afterwards, we cast the diagnostic decision support task
as a supervised text classification problem in which we model
the posterior probability of observing the case description given a
diagnosis-specific classifier.

4.1 Patient-centric Document Retrieval
This task is similar to the one studied in the TREC Clinical Decision
Support (CDS) track [19]. We use Lucene to index all 27M PubMed
abstracts and use the full case description as a query. Table 2 reports

1There is the possibility of NER false negatives that would lead to missed potentially
relevant documents. Given the generally high performance of this system, we consider
this a minor risk to corpus quality.
2https://github.com/codiag-public/dc3
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Table 1: DC3 Case Details

Case ID # Notes Final Diagnosis # CUIs # rel. Docs.
1 10 Histoplasma capsulatum infection 3 121
2 11 Necrotizing lymphadenitis, with features consistent with histiocytic necrotizing

lymphadenitis (Kikuchi-Fujimoto disease) and scattered EBV-positive cells
3 3,918

3 7 Infective endocarditis and infectious aortitis due to Staphylococcus aureus 18 10,767
4 8 Lead poisoning 1 2,387
5 13 Measles 7 13,466
6 7 Wilson’s Disease 1 1,298
7 11 Lemierre’s syndrome caused by Fusobacterium necrophorum, with cavernous-

sinus thrombophlebitis, carotid-artery thromboarteritis, and abscesses of the
parotid gland and subperiosteal orbit

9 276

8 7 Acute anaphylaxis due to a hepatic hydatid cyst caused by Echinococcus gran-
ulosus.

10 11,638

9 6 Invasive Neisseria meningitidis infection and primary C8 deficiency 5 3,149
10 10 Perforation of the right ventricular wall (by an implantable cardioverter-

defibrillator lead)
2 319

11 8 Borrelia miyamotoi infection and possible Borrelia burgdorferi infection 4 11,044
12 11 Disseminated pulmonary blastomycosis involving the hilar lymph nodes and

spleen, early hepatic cirrhosis, and acute tubular necrosis
5 55,750

13 10 Disseminated Mycobacterium bovis infection 6 54,359
14 14 Chronic recurrent abdominal pain caused by intermittent torsion of an accessory

spleen
4 794

15 25 Tuberculous enteritis 4 6,501
16 7 Mixed-cellularity subtype of classic Hodgkin’s lymphoma and Epstein-Barr

virus infection
10 7,538

17 9 Secondary syphilis with neurologic, ocular, and otologic involvement 13 1,774
18 8 Milk Alkali Syndrome 1 343
19 9 Acute HEV infection (Acute Viral Hepatitis) 13 9,222
20 12 Granulomatous amebic encephalitis, caused by acanthamoeba species. Sarcoido-

sis (old, burned out) involving heart, lungs, and spleen. Coronary arterioscle-
rosis with stent stenosis. Papillary renal-cell carcinoma and benign biliary
hamartoma

29 219,540

21 8 Primary adrenal insufficiency (Addison’s disease) 2 864
22 7 IgA vasculitis (Henoch Schonlein Purpura - HSP) 2 23,123
23 11 Acute Leptospirosis 7 3,597
24 7 Acute and chronic cholecystitis and extensive cholelithiasis with transmural

gallbladder inflammation
19 19,907

25 11 Combined inherited and acquired thrombotic thrombocytopenic purpura 4 3,233
26 10 Congenital rubella syndrome 6 6,545
27 8 Mycobacterial epididymo-orchitis due to Mycobacterium tuberculosis 10 91,855
28 6 Digoxin toxicity 2 387
29 8 Well-differentiated pancreatic neuroendocrine tumor, grade 1 3 3,420
30 6 Complete androgen insensitivity syndrome 5 1,219
31 11 Lyme meningoradiculitis 2 135

ranking performance of a range of well-known retrieval models in
terms of nDCG [5] scores at this task.

4.2 Classification
In an alternative take on the diagnostic decision support problem,
we train a range of disease-specific classifiers on the basis of Pubmed
abstracts. We collect all Pubmed abstracts mentioning the target
diagnosis as training data and assign the class of maximumposterior

probability. This classification problem becomes more difficult as
increased numbers k of target diagnoses are being considered. We
include the top k = {500, 1000, 2000} most frequent diagnoses as
observed in Pubmed and compare the performance of Naïve Bayes,
Logistic Regression and Support Vector Machine classifiers. This
selection of classification methods is by no means exhaustive and
many more modern and sophisticated techniques are expected to
perform better. This overview merely demonstrates the complexity
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Figure 1: An example of the DC3 case file format.

Table 2: Patient-centric literature retrieval results.

Model nDCG
TF-IDF 0.37
LambdaMART 0.41
DRMM 0.42

Table 3: Classification results for different choices of k .

Model 500 1000 2000
Naïve Bayes 0.13 0.08 0.04
Logistic Regression 0.14 0.08 0.06
SVM 0.17 0.09 0.07

of the task and the demand for innovation in order to truly support
unconstrained primary care diagnosis. Table 3 reports the results of
this comparison in terms of F1 scores. In addition to performance
differences between models, increased numbers k of considered
target diagnoses significantly increase classification difficulty.

5 CONCLUSION
In this paper, we present the first version of DC3, a diagnostic case
challenge collection for evaluation of clinical decision support sys-
tems. The corpus compiles 31 challenging cases fromMassachusetts
General Hospital in Boston, MA alongside their true underlying
diagnoses. As an especially interesting property, we share inferred
dense relevance judgments for these cases and the 2018 snapshot of
the NLM’s PubMed database, allowing for robust and reproducible
benchmarking of clinical decision support techniques. In an effort
to gauge the collection’s difficulty, we investigated two common
tasks of interest: Patient-centric literature retrieval, and supervised
classification for clinical decision support.

This paper describes a piece of early work in progress that has
several limitations to be addressed in the future. (1) Purely inferred
relevance judgments do not replace manual expert annotations.
They do however offer a powerful means of training retrieval sys-
tems that aim to bring the true diagnosis to the physician’s attention.
(2) Concentrating exclusively on complex cases does not reflect the
full spectrum of daily diagnostic tasks encountered by physicians
but may help address those cases that doctors struggle with most.
(3) The classification and retrieval methods presented in this col-
lection paper are not meant to reflect competitive solutions to the
problem but rather aim to illustrate task complexity.
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