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A B S T R A C T

Background and purpose: Manual annotation and categorization of non-standardized text (“free-text”) of drug
orders entered into electronic health records is a labor-intensive task. However, standardization is required for
drug order analyses and has implications for clinical decision support. Machine learning could help to speed up
manual labelling efforts. The objective of this study was to analyze the performance of deep machine learning
methods to annotate non-standardized text of drug order entries with their therapeutically active ingredients.
Materials and methods: The data consisted of drug orders entered 8/2009-4/2014 into the electronic health
records of inpatients at a large tertiary care academic medical center. We manually annotated the most frequent
order entry patterns with the active ingredient they contain (e.g. “Prograf”⟵“Tacrolimus”). We heuristically
included additional orders by means of character sequence comparisons to augment the training dataset. Finally,
we trained and employed character-level recurrent deep neural networks to classify non-standardized text of
drug order entries according to their active ingredients.
Results: A total of 26,611 distinct order patterns were considered in our study, of which the top 7.6% (2028) had
been annotated with one of 558 distinct ingredients, leaving 24,583 unlabeled observations. Character-level
recurrent deep neural networks achieved a Mean Reciprocal Rank (MRR) of 98% and outperformed the best
representative baseline, a trigram-based Support Vector Machine, by 2 percentage points.
Conclusion: Character-level recurrent deep neural networks can be used to map the active ingredient to non-
standardized text of drug order entries, outperforming other representative techniques. While machine learning
might help to facilitate categorization tasks, still a considerable amount of manual labelling and reviewing work
is required to train such systems.

1. Background

Hospitals have been storing increasingly large amounts of electronic
health record (EHR) data, including unstructured information such as
non-standardized text, which in the clinical setting is sometimes re-
ferred to as “free-text”. [1,2], Drug orders in particular hold consider-
able value for clinical decision support, prognostic modelling, inferring
conditions and forecasting the risk for adverse events. [3,4], To ac-
complish such downstream tasks, a standardized representation of drug
order information is required. However, standardizing drug order in-
formation is a cumbersome and time-consuming manual effort, e.g.
mapping the pharmaceutically active ingredient to the misspelled brand
name as entered by the provider. Machine learning, natural language
processing (NLP) and information retrieval methods have the potential
to advance the manual process of making non-standardized text more

accessible in clinical reasoning, for both humans and data-driven
counterparts [5].

2. Natural language processing for drug order information

Non-standardized text entries are an important part of general, as
well as drug-related EHR documentation. However, the advantages of
coded information in EHRs and the disadvantages of unstructured in-
formation are well-recognized and several studies have been published
on NLP applications for non-standardized text. [5] While the tasks ad-
dressed varied widely from study to study, numerous NLP tools were
developed to extract drug information from clinical notes [6]. Many of
these focused on dosage information such as the rule-based approach by
Karystianis et al. [7] The successful tool “MedEx” developed and pub-
lished by Xu et al. used a semantic tagger in combination with a parser
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to extract drug names, administration routes, dose information and
other features of drug orders [8].

Further efforts were undertaken to apply NLP techniques to clinical
text. [9] In particular, researchers tend to concentrate on two variants
of the same underlying task a) classifying an isolated stretch of text into
one of several possible drug classes, or, b) recognizing named drug
entities in longer consecutive stretches of text such as scholarly articles
or electronic health records. Patrick and Li developed a hybrid ma-
chine-learned and rule-based system for drug information extraction
from EHRs [10]. Doan and Hu addressed the same task via a support
vector machine with polynomial kernel and literal as well as syntactic
and medical domain features, finding that rich manually crafted feature
sets deliver the best performance results [11]. Jiang et al. dis-
ambiguated clinical entities in hospital discharge summaries using a
range of traditional NLP techniques and bag-of-words representations.
[9] Hussain and Qamar relied on tokenization and contextual in-
formation extraction derived from part-of-speech tagging and lexical
operations for drug name matching followed by a term frequency-in-
verse document frequency (TF-IDF) ranking [12]. While a wide range of
vocabulary based information extraction schemes, e.g., based on re-
sources such as the Unified Medical Language System (UMLS) have
been proposed in the past [13–15], more recent comparative studies
find machine-learning-based models to perform better for this task [6].
For this reason, our empirical performance comparison considered a
recently described support vector machine baseline. In the following
section we will discuss a range of more modern neural network-based
approaches to medical text processing.

3. Neural networks for medical text

Artificial neural networks are inspired by the highly interconnected
neurons of the animal brain and consist of groups (so-called layers) of
nodes interconnected via mathematical activation functions. Given
sufficiently many nodes and layers, these networks have the ability to
approximate highly non-linear target functions and have been shown to
excel at a wide range of tasks. An introduction into the topic can be
found elsewhere. [16] Recurrent neural networks [17] are able to
process input sequences of arbitrary length while maintaining an in-
ternal representation of state. This property makes them highly suitable
for speech recognition and natural language processing tasks. The Long
Short-Term Memory (LSTM) module [18] has been especially effective
by maintaining two latent state representations, distinguishing between
a latent vector used in making predictions and another one used to
encode sequential information in the module. This distinction is meant
to allow for the representation of long-term dependencies across the
input sequence. Unanue et al. used bi-directional LSTM-CRF models on
word tokens for extraction of biomedical entities such as drug mentions
[19]. The Gated Recurrent Unit (GRU) [20] is a newer alternative RNN
variant whose architecture resembles a simplified LSTM, striking a
compromise between representation expressiveness and complexity.
Gehrmann et al. presented a comparison of neural networks and more
traditional natural language processing techniques for the task of pa-
tient phenotyping from clinical narratives, finding that the re-
presentation learning capabilities of neural network architectures can
often outperform the more static behavior of systems relying on
manually designed features [21].

There are numerous examples of word-level RNNs based on part-of-
speech tag embeddings corresponding to words or character-level em-
beddings in the literature. [22,23], A token or word granularity enables
the use of pre-trained embeddings, leveraging insights and resources
from previous research efforts. However, this benefit comes at a cost.
Computation is limited to a specific vocabulary and unable to process
previously unseen words during the test or application phase, which has
been referred to as an “out-of-vocabulary” issue. Character-level models
have been successful at circumventing such effects. [24,25], Lipton
et al. applied LSTMs to perform multi-label diagnosis classification,

using irregularly sampled multivariate time series of clinical measure-
ments [26]. The success of this model family inspired some of the ap-
proaches presented in this article. Gridach proposed bi-directional
LSTMs, on character-level embeddings for Biomedical Named Entity
Recognition [27]. Hasan et al. presented an attention-based bidirec-
tional LSTM (alongside an encoder-decoder framework) to perform
clinical paraphrasing with various applications such as search, sum-
marization, and question answering [28].

To the best of our knowledge, and at the time of writing this article,
there has been no prior study using pre-categorized, non-standardized
text drug order entries to train RNN-based drug classification schemes.
The objective of this study was to analyze the performance of deep
machine learning methods to annotate non-standardized text of drug
order entries with their therapeutically active ingredients.

4. Materials and methods

4.1. Description of dataset and pre-processing

The data was comprised of 26,611 unique, non-standardized text
entries of drug order strings (referred to as “patterns”) collected 8/
2009-4/2014 at the University Hospital Zurich, a large tertiary care
academic medical center in Zurich, i.e. located in the German-speaking
part of Switzerland. Drug order entries are almost exclusively German,
as entered by the providers.

A typical entry is comprised of the brand name or active ingredient,
often with information on the dosage, e.g. “Torasemid 10mg”. While
some of these patterns, e.g. “Diamacron 60″ (misspelled), were only
observed once (i.e., only a single order used exactly this string), most of
them re-occurred multiple times in the dataset. For instance, the string
“Marcoumar 3mg” had been independently entered 17 times. We or-
dered all patterns descending by their frequency in the dataset and
manually categorized the top 7.6% (2028) by annotating them with one
of 558 distinct ingredients, leaving 24,583 unlabeled observations. The
mean length of the drug order entries was 31.3 characters, an entry
could be up to a maximum of 80 characters long, and the most frequent
length across all patterns was 14 characters.

We used the Anatomical Therapeutic Chemical Classification
System (ATC codes, WHO, Geneva, Switzerland; cf. https://www.
whocc.no/) as source of drug ingredients. For instance, the non-stan-
dardized and slightly misspelled text “Amlodiipin 5mg” should be
classified as a reference to the standardized ATC code C08CA01 for the
active ingredient amlodipine, as the code is labeled in the ATC cata-
logue. For the classification task, we focused only on the non-standar-
dized text of the drug order as entered by the provider on the one hand,
and on the other hand, corresponding ATC codes and their labels (ATC
catalogue lists codes, and each code is labeled with the active in-
gredient). One active ingredients may have multiple valid ATC codes,
e.g. vancomycin is usually administered intravenously (J01XA01), but
in rare cases of oral administration of vancomycin for intestinal infec-
tions, the ATC code A07AA09 could be used. Nevertheless, we follow
[10] in restricting our training dataset to exclusively consist of pre-
scriptions with a single target in order to ensure a feasible task scope as
well as accurate performance evaluation.

All drug order patterns were broken up into sequences of characters,
making them the atomic tokens on which our method operates. We
filtered out infrequent characters and replaced them with a designated
“UNKNOWN” token. This step is a common practice in NLP to enable
classifiers (neural networks as well as others) to process arbitrary se-
quences of text even if a particular token has never been encountered
during model training. [28] We applied “near-no-filtering”, requiring a
token to appear at least twice in the corpus or otherwise be replaced
with a designated “UNKNOWN” token.

For the test set, we applied proportionate stratified random sam-
pling, stratifying by ATC codes, with a sampling fraction of 0.25, en-
suring that 25% of the examples of each ATC code were included in the
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test set. The test set was only comprised of observations from the ori-
ginal labeled data-set (i.e. not derived from any of the data augmen-
tation steps described in the following section). In case the share of
original labeled observations in the stratum was lower than 25% (this
can be the case when most examples stemmed from the augmentation
process described below), all original labeled observations of that label
were reserved for testing.

4.2. Similarity-based classifier bootstrapping

Neural networks often rely on thousands or tens of thousands of
tunable parameters. They have been shown to require large amounts of
training data to accurately fit these parameters and thereby fully reach
their potential predictive power. [16] However, in our case, labeled
data (2028 instances) was scarce, compared to an abundance of un-
labeled examples (24,583 instances). We addressed this imbalance by
means of a bootstrapping approach that propagated explicit labels to
highly similar unlabeled instances before using both explicit as well as
inferred labels for model training. To do so, we used a similarity
measure, denoted sim ( , ), given by the Jaccard similarity,

=Jaccard X X( , )i j
X X
X X

| |
| |

i j
i j

, where Xi is a bag-of-words representation.
As a concrete example, the similarity between “Marcoumar” and

“Marciumar”, a highly related pair of patterns is 0.8 while the similarity
between “Marcoumar” and “Recormon” amounts to only 0.31. The si-
milarity-based label-suggestion procedure for a given unlabeled ob-
servation X̃j and similarity threshold is described by the following steps:

• Compute the similarities sim X X( ˜ , )j i for all labeled observations Xi.
• Retrieve a set of suggested labels and their corresponding simila-

rities, such that the remaining similarities are above the given si-
milarity threshold. The suggested label set is defined as:

=suggested X Y sim X X sim X X threshold( ˜ ) {( , ( ˜ , ))| ( ˜ , ) }j i j i j i

• Aggregate the set of distinct labels among the suggestions. The
distinct label set of an input sequence is called unanimous if it
contains exactly one label. =distinct X Y Y suggested X( ˜ ) { | ( , ) ( ˜ )}j i i j

We evaluated similarity threshold values in the range [0.5, 0.85]
using 0.05 increments and grouped all patterns in this score range into a
discrete similarity bin (e.g., all patterns with similarity scores > 0.5
and < = 0.55 are associated to the same bin, patterns with scores >
0.55 and < = 0.6 to the next, etc.). When choosing a high-similarity
threshold, recall (sensitivity) is sacrificed for precision (positive pre-
dictive value [PPV]). In order to judge the quality of labels suggested by
this procedure, a medical domain expert assessed their correctness on
the basis of a sample of 100 suggestions. Within each similarity bin,
suggestions were sampled at random. Since we expected the likelihood
of error to be greater for low-similarity suggestions, we biased the
sampling process to draw linearly more frequently from the low end of
the similarity scale. Hence, we drew 19,17,16,14,13,11,10 observations
from each bin, respectively.

Fig. 1 plots the observed frequency of correct and incorrect sug-
gestions as functions of the chosen similarity threshold.

We noted that similarity thresholds below 0.7 are highly error prone
and should not be considered. It was, however, less clear how the
proportions of false suggestions made in the [0.75, 0.8] and [0.7, 0.75]
bins compare. They provided an interesting trade-off between label
accuracy and breadth of coverage. As a consequence, we evaluated
classifiers derived from various similarity thresholds of {0.7, 0.8, 0.9}
and eventually also used a data-set without augmentation, which is
equivalent to setting the similarity threshold to 1.0.

4.3. Proposed model variants

Recurrent Neural Networks are a neural network family that has
been shown to be suitable for processing variable-length input

sequences such as text data. [18] These algorithms and their respective
performances can vary considerably depending on input data re-
presentation, network structure, optimization procedures, or target cost
function. This article investigates several network hyper-parameters,
RNN cell architectures, data feed directions, input data representations,
regularization schemes and optimization protocols. For input data re-
presentation, we evaluate both one-hot encoding (one distinct active bit
per input sequence) and character-level embeddings [29]. In all set-
tings, we rely on the popular Adam optimizer [30]. The remainder of
this section discusses the compared RNN types, data feed directions and
regularization techniques.

Another aspect of the RNN architecture that needs to be considered
is the manner in which data is parsed by the network. Traditionally,
RNNs read their inputs sequentially, in a temporally or otherwise or-
dered fashion. Bidirectional RNNs, [31] can be applied to a finite se-
quence, by feeding inputs into an RNN at both the forwards and
backwards direction. This procedure has been shown especially effec-
tive in sequence-to-sequence translation tasks and was included as an
experimental parameter of our study.

To counter over-fitting effects, this study employed L2 norm reg-
ularization (weight decay), dropout, [32] target replication [33] and
noisy activation functions [34]. Target replication, first introduced
under the label of “companion loss”, makes the task of classifying entire
sequences easier by replicating targets at every step. This study adopted
a setup inspired by Lipton et al. [26] having only one set of weights that
are used both for output prediction and target replication prediction.
Target replication is an especially promising choice in settings where
input sequences vary as expected for different spellings of drug names.

When applying target replication, an output ŷ t( ) is generated at
every sequence step. The resulting loss is a convex combination of the
final loss (at step T ) and the average of the losses over all steps, as
defined in Equation 1, where [0,1] is a hyper-parameter that de-
termines the relative importance of intermediary targets. At prediction
time, only the final step’s output is considered.

+
=T

loss y y loss y y1 ( ˆ , ) (1 ) ( ˆ , )
t

T t t T T
1

( ) ( ) ( ) ( )
(1)

Loss Function
Finally, we experimented with adding noise to the non-linear acti-

vation function of a neural network, or “noisy activation”, to introduce
linear behavior around the zero score range to allow gradients to flow
easily when the unit is not saturated, while providing a definitive de-
cision in the saturated regime. We followed the approach by Gülçehre
et al. who postulate that the amount of noise added to the activation
function should be proportional to the magnitude of saturation of the
nonlinearity. [34] Fig. 2 demonstrates this behavior.

4.4. Evaluation procedure

Internally, each RNN model is evaluated using its cost function,
multi-label cross-entropy. [35] In general, RNNs should be evaluated
based on the cost value, since training is aimed at minimizing that cost.
However, when comparing different RNN models among each other to
altogether different models, cost function values are not directly com-
parable. Instead, to allow for easy model comparison, we relied on
Mean Reciprocal Rank (MRR) [36] as defined in Equation 2. The MRR
metric is used in ranking scenarios with a single true class label. Instead
of reporting accuracy measures at making a single guess, this metric lets
the evaluated system produce a ranked list of all ATC codes in the
sample, ordered by their likelihood of being referred to by the non-
standardized input text. Optimal systems will rank the single true ATC
code highly (i.e. at small numerical ranks ranki) in the output list. This
results in a small enumerator component and a large overall MRR score.
Overall MRR is reported as the average inverse rank across all test in-
stances. The number of observations in both the training and test sets
varies between experiments, from 606 and 177 training and test
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examples, respectively (without data augmentation), to 2918 and 780
training and test examples, respectively, under consideration of a si-
milarity threshold of 0.7. This metric is bounded in the [0,1] interval,
where an MRR of 1 corresponds to perfect model performance.

=
=

MRR
n rank
1 1

i

n

i1 (2)

Mean Reciprocal Rank
To avoid inaccuracies in labels derived from using the similarity

bootstrapping procedure, the test set is comprised exclusively of ob-
servations from the manually labeled data-set for which there is no
doubt as to the ground truth. As a baseline comparison, we included a
support vector machine (SVM), with n-gram and bag-of-words features
and preprocessing as described above.

Due to the considerable number of tunable model hyper parameters
(see appendix), we determine the optimal hyper parameter settings for
each model type via 10-fold cross-validation on the training set. Only
once this model-specific optimal configuration is found, is the trained
model evaluated a single time on the held-out test set. The results of this
test set evaluation will be discussed in the following section.

5. Results

Our study compares two RNN architectures (GRU, LSTM), two data
feeding directions (feed-forward, bidirectional) and four similarity-
based bootstrapping methods (similarity thresholds of 0.7, 0.8, 0.9,
1.0), resulting in a total of n = 2*2*4 = 16 separately trained model
variants. The results are shown in Fig. 3. We can note that all compared
methods achieved very high performance levels that lie consistently
above the MRR = 0.95 mark.

We see that, across all conditions, GRU architectures outperformed
all other models. While the bidirectional GRU architecture’s perfor-
mance was roughly stable across different similarity thresholds, the
feed-forward models performed worse as the similarity threshold de-
creased and more noisy training examples were included. While the
GRUs were clearly leading the performance comparison, the remaining
methods (SVM and LSTM) were difficult to distinguish from each other,
showing very similar performance scores and only local variances de-
pending on bootstrapping similarity thresholds.

With only few local exceptions, feed-forward architectures appeared
superior to bidirectional methods. Only in case of high levels of training
data noise induced by low bootstrapping similarity thresholds, did

Fig. 1. Bootstrap label propagation accuracy.

Fig. 2. Noisy Activation.

Y. Raiskin, et al. International Journal of Medical Informatics 129 (2019) 20–28

23



bidirectional processing offer advantages.
We can note that the choice of similarity threshold for training data

augmentation had only a limited effect on the resulting models’ per-
formance. Somewhat surprisingly, it was the SVMs rather than the
highly parametric neural networks that benefitted most strongly from
the availability of additional noisy training examples. The LSTM models
showed a non-monotonic development of MRR scores in response to
relaxed similarity thresholds, experiencing a local performance
minimum for similarity thresholds of 0.8 from which they recover in
both directions. While this augmentation method holds an interesting
potential for training different model types (e.g., SVMs vs. neural net-
works), the overall highest scores are obtained via models trained ex-
clusively on noise-free manually labeled examples.

Aside from these fundamental architectural decisions, we in-
vestigated a broad range of hyperparameters including embedding
hidden-state sizes, noisy activation, dropout and target replication
parameters. While we observed locally effective combinations, the only
general trend that could be noted was a beneficial effect of noisy tanh
activation over other activation functions. The 16 models presented
above are the individually strongest configurations per architecture.
Their complete range of hyperparameters is described in the appendix.

Seeing how all compared methods achieve similar performance
scores, we conducted a second, alternative performance evaluation in a
more challenging setting. Going beyond the previous global perfor-
mance evaluation, we broke down results per input prescription se-
quence length, as shown in Fig. 4. The longest individual drug order
name was 80 characters long (a hard limitation imposed on this field by
the medical center’s clinical information system). In this experiment,
we restricted the input data that the classifiers receive to only the first k
characters, k {1, . .., 80}, making it harder for the classifiers to cor-
rectly identify the intended ATC code. The models were identical to the
previously discussed ones and were not specifically retrained for this
more challenging setting. As expected, all models perform better given
larger choices of k (i.e., longer input sequence to classify). The extent of
this performance detriment, however, varies considerably across model
types and data augmentation thresholds. After as few as five processed
characters, the feed-forward GRU-based method achieved close-to-op-
timal performance at recognizing active agents from drug orders. For all
other methods, this level of accuracy was reached after having pro-
cessed approximately 50–70 characters. As the amount of training set
noise induced by similarity-based bootstrapping was increased, the
number of characters necessary to attain a given performance level
increased for all methods. While generally not performing well on short

input sequences, again, SVMs show good robustness to noisy training
labels.

6. Discussion and conclusion

This study investigated the use of character-level RNN classifiers for
automatically categorizing non-standardized text drug orders into
groups of ATC codes representing the active ingredients. Our experi-
ments identified an array of neural network architectures that sur-
passed the quality of more traditional text classification methods such
as regression or support vector models.

In comparison with other approaches, Korkontzelos et al. con-
sidered DrugBank entries as a dictionary in their investigation. [37]
They suggested a boosting approach to increase the number of anno-
tated drugs, in a way similar to the bootstrapping used in the present
study to annotate further unlabeled drug orders. However, we did not
additionally rely on external resources such as DrugBank.

The sophisticated work by Li et al. used machine learning and NLP
in a hybrid algorithm to perform medication reconciliation. [38] This
research group analyzed clinical non-standardized text notes and mat-
ched identified drugs with their structured drug order counterparts to
detect discrepancies. Although they did not apply recurrent neural
networks, the involvement of drug order data shows some parallels to
our present study.

Still, the use of deep neural networks in “drug name recognition”
has been advocated. [39] Chalapathy et al. investigated recurrent
neural architectures to recognize drug name mentions in non-standar-
dized text [40].

In summary, to our knowledge, it appears that our study is the first
to use recurrent neural networks to categorize non-standardized text
drug order entries into groups of active ingredients based on the ATC
classification. Since our approach is independent of clinical notes, it
could be applied on-the-fly, immediately during computerized provider
order entry (CPOE).

Our study has limitations that need to be taken into account in in-
terpreting the results. We used drug ordering data from a single center
and only inpatient data were available. While our method achieved
high accuracy, coverage remains a concern. In order to be able to assign
a given ATC code, the deep learning system requires at least one
manually created training example of a non-standardized text order for
this active agent. Considering the broad range of available ATC codes,
this implies a considerable manual labelling effort in order to arrive at a
system that delivers not only high accuracy but also satisfying coverage

Fig. 3. Global method performance.
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of the common drug order spectrum. In this work, we limited manual
labelling to the 7.6% most frequently observed drug order sequences,
and in a bootstrapping effort propagated explicit labels to similar un-
labeled data points. With the bootstrapping effort, we were able to
retrieve additional variations of previously scarcely observed drug
order character sequences. This increase in variation enabled us to train
our classifiers on these previously rare ATC codes, thus improving the
coverage of known ATC codes. However, this does not remedy limited
coverage across all drug orders.

This study has implications for EHR-driven healthcare processes and
research in domains such as clinical decision support or automated
adverse drug reaction identification in cases of non-standardized text
drug order entry, but also for administrative tasks, e.g. billing and au-
diting purposes that require considerable manual involvement, as parts
of the electronically available data are non-standardized and cannot be
automatically processed a priori. The proposed methods are therefore
approaches to reduce the manual burden needed for the extraction of
categorical information from non-standardized text input.

Additionally, from a computer science and NLP perspective, the
present study investigated how limiting the number of available char-
acters of a non-standardized text drug order may influence a reliable

recognition of the correct active agent, and we found that highly ac-
curate predictions can be made already very early in the input se-
quence. This observation holds considerable potential towards creating
smart input assistance for clinical information systems that allow clin-
ical staff to efficiently document drug orders by typing only few char-
acters, while not limiting them to a fixed list of exact drug name spel-
lings. Such technology combines the benefits of flexible, highly
expressive non-standardized text input and easily interpretable and
auditable categorical drug orders, which can be seen as a more tolerant
interpretation of the drug order entered. However, there is still a
downside to this approach, which leads to opportunities for future re-
search as suggested below.

It is well known that look-alike, sound-alike drug names are some-
times confused by providers, which is a serious threat to patient safety.
[41] Lists of drug and brand names requiring particular caution have
therefore been put forward as a strategy to mitigate the risk of ordering
the wrong therapy [42]. On the one hand, some approaches described
here could help to generate lists of similar drug and brand names that
should be investigated in terms of the usefulness of automatically ex-
tending lists of drug names prone to erroneous ordering. On the other
hand, it is likely that “automated tolerant interpretation” of order

Fig. 4. MRR as a function of input sequence length.
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entries as mentioned above may increase the risk of misinterpretation
and confusion. Hence, there is room for human factors and NLP re-
search to develop approaches reducing the risks arising from look-alike,
sound-alike drug and brand names. Therefore, further research is
needed around the “human-in-the-loop” model by investigating ques-
tions of trust, acceptance, re-traceability and thus ultimately explain-
ability of the results [43].

To address one of the method’s current limitations, namely low
coverage, we suggest drawing from external resources such as UMLS,
Drugbank or Wikipedia in order to obtain a broad, yet accurate over-
view of drug identifiers. This approach holds the additional benefit of
creating a bridge between different national languages. While non-
standardized text drug orders for the same active agent may differ
vastly based on language and local branding, structured knowledge
repositories typically provide pointers to various language variants of
the same entity. Still, these datasets often contain very limited amounts
of textual variance per drug, due to their structured and normalized
nature. Therefore, in order to effectively train a supervised learning
model, it is better to compose a dataset from different sources. This
would enable achieving a sufficient level of textual variance, necessary
for supervised learning.

In conclusion, character-level recurrent deep neural networks can
be used to map the active ingredient to non-standardized text of drug
order entries, outperforming other representative techniques. While
machine learning might help to facilitate categorization tasks, still a
considerable amount of manual labelling and reviewing work is re-
quired to train such systems. In order to reduce the manual annotation
burden per project, there is significant promise in using semi-supervised
learning or weak/distant supervision techniques that leverage existing
labels from other, related tasks when training new models. This direc-
tion should be carefully investigated in future work. The ultimate goal
of the proposed approach for the clinical practice would be the “on-the-
fly interpretation” of non-standardized text of drug order entries in
order to warn the provider against harm potentially induced by the
drug. For instance, “penicilin” [sic] could – although misspelled – still
trigger an anaphylactic shock if administered to a patient with a peni-
cillin allergy.
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Summary points
What is already known?

• Drug orders hold considerable value for clinical decision support,
prognostic modelling, inferring conditions and forecasting the risk
of adverse events

• However, non-standardized text order entries are a well-known
problem hampering the automated interpretation of electronically
ordered drug therapies

What does this study add?

• We automatically annotated non-standardized text of drug orders
with their active ingredients by means of character-level recurrent
deep neural networks

• The proposed method achieved a Mean Reciprocal Rank of 98% and
outperformed a range of representative alternatives

• While machine learning might help to facilitate categorization tasks,
still a considerable amount of manual labelling and reviewing work
is required to train such systems.

;1;

APPENDIX

Hyper-parameters Range

Hyper-parameter Range

RNN cell architecture LSTM, GRU
Data feed direction forward-feed, bidirectional
Data vector representation 4 dimensional character-level embeddings, 8 dimensional character-level embeddings, one-hot character-level encoding
Learning rate 10−3, 10-2, 10-1, dynamically changing
Optimization protocol ADAM optimizer, Stochastic Gradient Descent
Hidden state dimensionality 16, 32, 64, 128
L2 norm regularization weight 10−3, 10-2, 10-1

Target replication regularization weight 0.3, 0.5
Dropout keep probability 0.5, 0.7, 1.0
Activation function Tanh, Noisy tanh
P (noisy activation function parameter) Learnt, 1.0
Alpha (noisy activation function parameter) 0.9, 1.15
Noise (noisy activation function parameter) Normal, Half-normal
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Top 10 Models At Different Similarity Thresholds

Similarity threshold 1.0

Rank Model
Type

Bidirectional Optimal
MRR

Activation
Function

Learn
p

Alpha Half Normal
Noise

Learning
Rate

Keep
Probability

Hidden State
Size

L2 Norm
Constant

Target Replication
Constant

1 GRU F 0.9810 Noisy tanh F 0.9 T 0.01 1 128 0.01 0.3
2 GRU F 0.9801 Noisy tanh T 1.15 T 0.01 0.5 128 0.001 0.5
3 GRU F 0.9795 Noisy tanh F 1.15 F 0.01 0.5 128 0.01 0.5
4 GRU F 0.9795 Noisy tanh F 0.9 T 0.01 0.5 128 0.01 0.5
5 GRU F 0.9790 Noisy tanh T 1.15 F 0.01 0.7 128 0.01 0.3
6 GRU F 0.9789 Tanh NA NA NA 0.01 0.7 128 0.001 0.5
7 GRU F 0.9777 Noisy tanh T 0.9 F 0.01 0.5 128 0.01 0.5
8 GRU T 0.9774 Noisy tanh T 1.15 T 0.01 0.5 128 0.001 0.5
9 GRU F 0.9769 Noisy tanh T 1.15 F 0.01 0.5 128 0.001 0.5
10 GRU F 0.9768 Noisy tanh T 0.9 T 0.01 1 128 0.01 0.3

Similarity threshold 0.9

Rank Model
Type

Bidirectional Optimal
MRR

Activation
Function

Learn
p

Alpha Half Normal
Noise

Learning
Rate

Keep
Probability

Hidden State
Size

L2 Norm
Constant

Target Replication
Constant

1 GRU F 0.9810 Noisy tanh F 0.9 T 0.01 1 128 0.01 0.3
2 GRU F 0.9801 Noisy tanh T 1.15 T 0.01 0.5 128 0.001 0.5
3 GRU F 0.9795 Noisy tanh F 1.15 F 0.01 0.5 128 0.01 0.5
4 GRU F 0.9795 Noisy tanh F 0.9 T 0.01 0.5 128 0.01 0.5
5 GRU F 0.9790 Noisy tanh T 1.15 F 0.01 0.7 128 0.01 0.3
6 GRU F 0.9789 Tanh NA NA NA 0.01 0.7 128 0.001 0.5
7 GRU F 0.9777 Noisy tanh T 0.9 F 0.01 0.5 128 0.01 0.5
8 GRU T 0.9774 Noisy tanh T 1.15 T 0.01 0.5 128 0.001 0.5
9 GRU F 0.9769 Noisy tanh T 1.15 F 0.01 0.5 128 0.001 0.5
10 GRU F 0.9768 Noisy tanh T 0.9 T 0.01 1 128 0.01 0.3

Similarity threshold 0.8

Rank Model
Type

Bidirectional Optimal
MRR

Activation
Function

Learn
p

Alpha Half Normal
Noise

Learning
Rate

Keep
Probability

Hidden State
Size

L2 Norm
Constant

Target Replication
Constant

1 GRU T 0.9764 Noisy tanh F 0.9 F 0.01 0.7 128 0.001 0.5
2 GRU F 0.9762 Noisy tanh T 0.9 T 0.01 0.5 128 0.001 0.5
3 GRU F 0.9762 Noisy tanh F 0.9 F 0.01 0.5 128 0.001 0.5
4 GRU T 0.9753 Noisy tanh F 0.9 F 0.01 0.5 128 0.001 0.5
5 GRU T 0.9745 Noisy tanh F 1.15 F 0.01 0.7 128 0.01 0.5
6 GRU T 0.9742 Noisy tanh F 1.15 F 0.01 0.5 128 0.001 0.5
7 GRU F 0.9739 Noisy tanh T 1.15 T 0.01 0.5 128 0.001 0.3
8 GRU F 0.9737 Noisy tanh T 0.9 F 0.01 0.5 128 0.001 0.5
9 GRU F 0.9733 Noisy tanh F 0.9 F 0.01 1 128 0.001 0.3
10 GRU F 0.9731 Tanh NA NA NA 0.1 1 64 0.001 NA

Similarity threshold 0.7

Rank Model
Type

Bidirectional Optimal
MRR

Activation
Function

Learn
p

Alpha Half Normal
Noise

Learning
Rate

Keep
Probability

Hidden State
Size

L2 Norm
Constant

Target Replication
Constant

1 GRU T 0.9789 Noisy tanh F 0.9 F 0.01 0.5 128 0.01 0.3
2 GRU T 0.9785 Noisy tanh F 1.15 T 0.01 0.5 128 0.001 0.5
3 GRU T 0.9785 Noisy tanh F 0.9 T 0.01 0.7 128 0.01 0.5
4 GRU T 0.9760 Noisy tanh T 0.9 F 0.01 0.5 128 0.001 0.5
5 GRU F 0.9757 Noisy tanh F 0.9 T 0.01 0.5 128 0.001 0.3
6 GRU T 0.9745 Noisy tanh F 0.9 F 0.01 0.5 128 0.001 0.3
7 GRU T 0.9742 Noisy tanh T 0.9 T 0.01 0.5 128 0.001 0.5
8 GRU T 0.9736 Noisy tanh T 0.9 F 0.01 0.7 128 0.001 0.5
9 GRU T 0.9733 Noisy tanh T 1.15 F 0.01 0.5 128 0.01 0.5
10 GRU F 0.9732 Tanh NA NA NA 0.01 0.7 128 0.001 0.3
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