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Wasserstein Adversarial Learning based Temporal
Knowledge Graph Embedding
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Abstract—Research on knowledge graph embedding (KGE)
has emerged as an active field in which most existing KGE
approaches mainly focus on static structural data and ignore the
influence of temporal variation involved in time-aware triples.
In order to deal with this issue, several temporal knowledge
graph embedding (TKGE) approaches have been proposed to
integrate temporal and structural information in recent years.
However, these methods only employ a uniformly random sam-
pling to construct negative facts. As a consequence, the corrupted
samples are often too simplistic for training an effective model.
In this paper, we propose a new temporal knowledge graph
embedding framework by introducing adversarial learning to
further refine the performance of traditional TKGE models.
In our framework, a generator is utilized to construct high-
quality plausible quadruples and a discriminator learns to obtain
the embeddings of entities and relations based on both positive
and negative samples. Meanwhile, we also apply a Gumbel-
Softmax relaxation and the Wasserstein distance to prevent
vanishing gradient problems on discrete data; an inherent flaw
in traditional generative adversarial networks. Through com-
prehensive experimentation on temporal datasets, the results
indicate that our proposed framework can attain significant
improvements based on benchmark models and also demonstrate
the effectiveness and applicability of our framework.

Index Terms—Temporal knowledge graph embedding, Genera-
tive adversarial networks, Wasserstein distance, Gumbel-Softmax
relaxation.

I. INTRODUCTION

KNOWLEDGE graphs (KGs), also called knowledge
bases (KBs), are employed for gathering and organizing

distributed human knowledge and information in a graph
structure where nodes represent entities and edges indicate
relations. In recent years, a variety of large-scale KGs such
as DBpedia [1], NELL [2] and Wikidata [3] have been very
successfully applied for many natural language processing
(NLP) tasks including machine reading [4], [5], question
answering [6], [7], and information retrieval [8], [9]. A typical
knowledge graph is composed of various triple facts (h, r, t),
in which h and t denote head and tail entities respectively, and
r indicates a relationship from h to t, e.g., (Albert Einstein,
has won price, Nobel Prize in Physics).

Unfortunately, issues of data sparsity and computational
complexity have intensified with the increasing amount of
information contained in large-scale KGs, which could cause
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Fig. 1. A simple temporal knowledge sub-graph to illustrate the necessity of
considering time-aware information on KGs. Any fact can only be established
at a specific timestamp.

management and manipulation difficulties. In order to deal
with these problems, knowledge graph embedding (KGE) has
been proposed and gained substantial attention [10]–[13]. The
main idea of a KGE model is to represent both entities
and relations in low-dimensional feature spaces so as to
condense data space and simplify calculation while preserving
the inherent nature of the original graph.

Existing KGE approaches mainly focus on static knowledge
graphs based on the assumption that the contained facts are
statically true and will not change over time. However, in
real-life situations, most objective facts are only valid during
a certain time point or period, in other words, KGs in the
real world tend to be dynamic and the authenticity of triples
evolves over time. For instance, as displayed in Figure 1, a
sentence “Albert Einstein has won the Nobel Prize in Physics
in 1921.” can be constructed as one triple (Albert Einstein,
has won price, Nobel Prize in Physics), and this fact was
only correct in 1921. Since existing static KGE methods solely
learn from time-agnostic triple facts and ignore the potentially
beneficial temporal information, it is important to provide an
embedding approach for dynamic KGs.

To achieve this goal, various temporal knowledge graph
embedding (TKGE) models have been provided to incorporate
temporal information in their embedding vectors. They usually
calculate a hidden embedding vector for each timestamp
and extend the final score function by absorbing this repre-
sentation as well as entity and relation embeddings. TKGE
methods proved that they outperform traditional KGE models
on temporal KGs. However, such models generate negative
facts through a uniform negative sampling strategy [10] that
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replaces head or tail entities in a positive triple with a different
one from the entity candidate set in which all entities share the
same sampling weights. This simple sampling scheme usually
introduces only very limited benefits to the performance of
the learned embedding model and can even delay model
convergence [14], [15].

In recent years, generative adversarial networks
(GANs) [16] have become a popular research direction
owing to their powerful generalization and representation
capabilities. They have not, however, yielded satisfying
results in many natural language processing (NLP) tasks as
the original GANs perform well on continuous data, but
cannot be directly deployed on discrete data due to issues
of vanishing gradients. To address this drawback, policy
gradient, a type of reinforcement learning (RL) algorithm,
was introduced to replace the existed back propagation, this
new strategy was then applied in traditional KGE models to
generate more plausible negative samples to refine a model’s
performance [17], [18]. Although these architectures have
been proven effective, high-variance optimization processes
require a large number of computational resources while
brittle hyper-parameters increase instability of the already
difficult-to-train GANs during training time.

In this paper, we propose a robust temporal knowledge
graph embedding framework based on adversarial learning.
The proposed framework utilizes a generator to construct more
plausible negative triples. Afterwards, these negative samples
are incorporated with positive triples and jointly fed into a
discriminator to yield the embedding vectors which form the
final representation of the TKGE model. Moreover, we intro-
duce Gumbel-Softmax relaxation and the Wasserstein distance
to handle the issue of vanishing gradients on discrete data
without policy gradient mechanisms. The main contributions
in this paper are:

• Learning the embedding vectors for temporal knowl-
edge graphs is a scarcely explored research field as
most existing KG representation approaches solely train
models from triples without time-unknown facts. In this
paper, we propose a new TKGE embedding framework
to allow embedding models acquiring representations by
incorporating temporal information.

• To the best of our knowledge, we are the first to introduce
generative adversarial learning to TKGE. The generator is
capable of constructing more plausible negative samples
and the discriminator utilizes these positive and negative
triple facts to train the final TKGE model. In addition,
our proposed framework is remarkably extensible and can
be applied to most existing embedding models.

• We comprehensively evaluate the robustness and effec-
tiveness of our proposed framework on a link prediction
task on five TKG benchmark datasets. The experimental
results show that our framework can effectively improve
the performance of the original TKGE models.

The remainder of this paper is organized as follows. In
Section II, we introduce several existing static and dynamic
knowledge graph embedding models and briefly highlight the
connections and differences between them. Section III illus-

trates the proposed overall adversarial framework and its train-
ing procedure in detail. Section IV delineates experimental
details, including benchmark datasets, experimental parameter
initialization settings and results. We provide a qualitative
comparison and discussion between the results obtained via
our framework and the original methods in Section V. Finally,
concluding remarks are deliberated in Section VI.

II. RELATED WORKS

In this section, we begin by introducing several basic
notations and corresponding explanations that will be used in
the remainder of this paper. Afterward, we supply a general
definition of the knowledge graph representation learning
problem and introduce a representative range of embedding
models.

Ordinary lowercase letters represent scalars, bold lowercase
letters represent vectors and bold uppercase letters represent
matrices. Given a knowledge graph consisted of a set of
triple G =< s, p, o >, where s and o are both in entity
set E and p belongs to relation set R. KG embedding aims
to transform each entity and relation into a low-dimensional
feature space. A large number of KGE methods have been
proposed. These works can be roughly categorized into two
branches: conventional static knowledge graph embedding
methods and the emerging field of dynamic knowledge graph
embeddings.

A. Static knowledge graph embedding

Mikolov et al. [19] proposed a word embedding algorithm
by following the translation invariance principle that words
with similar connotation should have similar representations.
Inspired by this translation based idea, Bordes et al. [10]
extended the same principle to the knowledge graph, and
proposed the TransE model. TransE interprets relations as
translation vector connected vectors of head and tail entities,
i.e., es + ep ≈ eo. The authenticity of each triple (s, p, o) is
measured by a score function. The score implies the distance
between es+ep and eo, and the function is shown as follows:

f(s, p, o) = ‖es + ep − eo‖`1/`2 . (1)

Here, ‖·‖ denotes the norm operation, `1, `2 are L1-norm
and L2-norm, respectively. Even though TransE achieves solid
KGE performance, it struggles to address complex relations,
such as 1−N , N−1, and N−N . Therefore, other embedding
models, such as TransH [11], TransR [12], TransG [20], etc.,
have been proposed.

Different from the above approaches, tensor factorization
based KGE methods such as RESCAL [21], DistMult [22],
ComplEx [23], SimplE [24] and so forth are another effective
category for knowledge graph embeddings, in which each
relation p transforms into a latent semantic meaning matrix
Mp and the score function f(s, p, o) is formulated as:

f(s, p, o) = e>sMpeo, (2)

where es, eo ∈ Rd denote entity embedding vectors. In recent
years, deep neural network-based approaches have received
considerable development. Several methods [25]–[30] utilized
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feed-forward or convolutional neural networks (CNN) for
scoring the authenticity of given triples.

B. Dynamic knowledge graph embedding

The above methods have yielded solid results in knowl-
edge graph embedding applications. However, these traditional
KGE models have limitations when processing temporal facts.
As we illustrate in Figure 1, the authenticity of objective facts
is given in a distinct period and can change over time. To
overcome this deficiency, some novel attempts are proposed to
integrate temporal information for modeling dynamic knowl-
edge graphs.

Leblay et al. [31] extended the traditional TransE into a tem-
poral embedding model TTransE via an additional embedding
transformation: from timestamps to hidden representations.
For each temporal fact (s, p, o, t), time t is also embedded
in the same feature space as entities and relations. The final
score function is modified as:

f(s, p, o, t) = ‖es + ep + et − eo‖`1/`2 . (3)

HyTE [32] aimed to make entities have different distributed
representations at different time points. It transforms time as a
hyperplane, each embedding vector es, ep or eo is projected
on time-specific hyperplanes wt as:

es = es −w>t eswt
ep = ep −w>t epwt
eo = eo −w>t eowt.

(4)

Intuitively, HyTE represents entities and relations to their
corresponding time-specific spaces and utilizes the primitive
TransE score function to distinguish the authenticity of given
facts.

Garcia-Duran et al. [33] introduced Long Short-Term Mem-
ory (LSTM) networks to obtain time-aware representations of
relations. In their models, each timestamp can be decomposed
into a sequence of temporal characters, a time-aware relation
embedding vector ep,t is calculated by feeding each element
in this time sequence to an LSTM and taking its final output.
Based on the previous model, the authors present two different
improved versions TA-TransE and TA-DistMult, their score
function are defined as follows:

TA− TransE : f(s, p, o, t) = ‖es + ep,t − eo‖`1/`2 (5)

TA−DistMult : f(s, p, o, t) = (es ◦ eo)e>p,t, (6)

where ◦ is the element-wise product operation.
Inspired by diachronic word embeddings, Goel et al. [34]

proposed an alternative entity embedding function that dynam-
ically projects entity-time pairs to hidden representations. For
each entity and time pair (s, t), the embedded entity vector
es,t within the time period is computed as:

es[n] =

{
as,t[n]σ (ws[n]t + bs[n]) , if 1 ≤ n ≤ γd
as[n], if γd < n ≤ d

(7)
where as ∈ Rd and ws, bs ∈ Rγd are learnable vectors
associated with entity s, and σ denotes an activation function.
Using the above proposal, many existing traditional static

KGE models, such as TransE, DistMult and SimplE, also con-
structed their temporal versions to deal with time information
by replacing original es and eo with es,t and eo,t, respectively.

TeRo [35] defined the temporal evolution of entity embed-
dings as a rotation in complex vector space. For any timestamp
t, TeRo transforms entities and relations to their corresponding
complex embeddings, i.e., es, ep, eo ∈ Ck, and acquires
time-specific entity embeddings es,t and eo,t by regarding
each timestamp t as an element-wise rotation of the original
time-independent entity embeddings. Thereafter, the relation
embedding ep is to consider as translation from the time-aware
subject embedding es,t to the conjugate of the time-aware
object embedding eo,t. TeLM [36] moved beyond complex-
valued embeddings and utilized more expressive multivector
representations from asymmetric geometric products to model
entities, relations, and timestamps for temporal knowledge
graph embedding.

Messner et al. [37] constructed a spatio-translational TKGE
model based on the static box embedding method BoxTE [38].
In BoxTE, each entity e is translated to be associated with two
vectors, a base position vector es ∈ Rd and a translational
bump vector bs ∈ Rd. A corresponding time bump is then
calculated by integrating relation p and timestamp t following
the below formulation:

ep,t = αpKt, (8)

where α indicates a scalar vector correlated to a relation and
Kt is a time-dependent matrix. Finally, the head and tail entity
representations are designed as:

es = es + bo + ep,t
eo = eo + bs + ep,t.

(9)

In summary, many researchers have made great contribu-
tions in TKGE. However, their approaches only adopt random
sampling strategies to generate negative facts by randomly
selecting a candidate entity from the entity set E to replace
the head or tail entity from the original positive triple. A
more advanced sampling scheme can significantly improve
the embedding performance. In this paper, we describe a new
robust framework based on adversarial learning for improving
the representation ability of TKGE models by constructing
high quality plausible negative facts to train the discrimina-
tor. Compared with the above methods, our framework can
generate more plausible negative samples, thereby improving
the performance and practical usefulness of the temporal
knowledge graph embedding model.

III. THE PROPOSED FRAMEWORK

A temporal knowledge graph is a directed graph where
nodes represent various entities, edges correspond to various
relations between pairs of entities and each fact carries a time
attribute which indicates the period during which this triple
fact is valid. Given a temporal knowledge graph consisting
of a collection of observed facts (s, p, o, t), and a pre-defined
embedding dimension d, temporal knowledge graph embed-
ding projects each entity s ∈ E and relation p ∈ R into a
d-dimensional continuous feature space. With this numerical
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(Albert Einstein, has won prize, Nobel Prize in Physics, 1921)

Albert Einstein,
has won prize,

Nobel Prize in Physics,
1921

Paul Dirac
p(d|x;θ)=0.5

?, has won prize,
Nobel Prize in Physics,

1921

Elon Musk
p(d|x;θ)=0.3

Canada
p(d|x;θ)=0.15

Microsoft
p(d|x;θ)=0.05

Paul Dirac,
has won prize,
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1921

Real samples

Fake samples

The discriminatorThe generator

Temporal
Embedding

Model

Temporal
Embedding

Model

Gumbel-Softmax

Fig. 2. The framework of the proposed adversarial learning for temporal knowledge graph embedding. The generator learns to construct plausible negative
facts for the discriminator. The discriminator utilizes the generated corrupted and valid triples to yield a robust and effective temporal knowledge graph
representation.

vector representation, we can relieve the inherent issue of data
sparsity and computational burden in large-scale TKG and
support downstream applications such as link prediction and
triple classification.

In this section, we elaborate our TKGE model in detail.
Figure 2 delineates the proposed adversarial learning
framework. At the beginning, a head or tail entity is discarded
randomly over an authentic fact, and the resulting fragmentary
fact (?, has won prize,Nobel Prize in Physics, 1921) is
obtained as the input of the generator. The generator receives
it and selects another entity that has high similarity with
Albert Einstein (see Paul Dirac in the figure) from a
collection of candidate entities to construct a corrupted fact
(Paul Dirac, has won prize,Nobel Prize in Physics, 1921).
For the discriminator direction, the generated and true facts
are jointly fed into the TKGE model for learning robust
representations. In consequence, we cannot only ensure that
this framework can generate more diverse entities, but also
guarantee that the generated entities are proximal in terms
of semantics or functionality to the original ones in feature
embedding space.

A. Generator for sampling negative facts

The goal of the generator is to construct more plausible
negative facts for training the discriminator more effectively
than what can be achieved through traditional random negative
sampling methods.

1) Deficiencies of traditional negative sampling: Since
Bordes et al. [10] introduced uniform negative sampling to
yield corrupted triple facts, many methods have followed this
strategy to sample negative facts during model training. This
strategy stochastically replaces the head or tail entity which
form the original positive triple with a candidate entity from
the entity set E. All candidate entities in the entity set share

the same probability of being chosen. Most TKGE models also
follow this sampling pattern.

Unsurprisingly, this sampling approach is limited
in its capacity of training an effective representation
model in most cases. For instance, given a valid triple
(Albert Einstein, has won prize,Nobel Prize in Physics,
1921), our purpose is to replace the head entity with
another entity to constitute a negative triple. Considering
the relation “has won prize” and the entity type of
“Albert Einstein”, it is intuitive that the head entity should
be a renowned individual. If we apply random sampling to
select candidate entities, the constructed negative triple such
as (Microsoft, has won prize,Nobel Prize in Physics,
1921) or (Canada, has won prize,Nobel Prize in Physics,
1921) can be trivially distinguished by the discriminator,
resulting in infrequent parameter updates. In contrast,
if we utilize a sampling scheme that generates
negative samples with more reliability, such as
(Paul Dirac, has won prize,Nobel Prize in Physics, 1921),
then it forces the discriminator to be more fully trained and
further improve the representation ability of the embedding
model.

To this end, we introduce a generative adversarial frame-
work to refactor more plausible negative facts instead of tra-
ditional uniform random sampling strategy. Here, the generator
is designed to construct reasonable negative triples, while
the discriminator receives these high-quality training facts to
further refine the embedding model. However, there is still a
“vanishing gradient”, also called “non-differentiability” issue
in discrete data generation.

2) Gumbel-Max reparametrization for discrete data: We
first establish the motivation why training generative adversar-
ial learning model on discrete data is a pivotal problem from
mathematical and instance perspectives. In the mathematical
sense, assuming the total number of entities is |E|, the one-hot
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vector y ∈ R|E| which indexes the next candidate entity can
be obtained via the generator by sampling:

y ∼ σ(log(κ)), (10)

where log(κ) ∈ R|E| indicates the output logits of the
generator and σ(·) is the Softmax function. The sampling
operation in Equation (10) indicates a step function which
is not differentiable at the last layer of the generator. Since
the differential coefficient of a step function is 0 almost
everywhere, we have ∂y/∂θG = 0, a.e. , where θG represents
the parameters associated with the generator. Using the chain
rule, the gradients of the generator lG with respect to θG are
formulated as:

∂lG
∂θG

=
∂y

∂θG

∂lG
∂y

= 0 a.e. (11)

Therefore, ∂lG/∂θG = 0 means that the gradient of the
generator loss cannot be propagated back to the generator
through the discriminator. In other words, the generator cannot
update its own parameters based on the feedback mechanism
provided by the discriminator. This circumstance is called
the “vanishing gradient” or “non-differentiability” issue of
generative adversarial networks in discrete data applications.

Let us consider a concrete example. Even though there
are two disparate vectors, α = [0.25, 0.35, 0.25, 0.15] and
β = [0.05, 0.70, 0.15, 0.10], which are both obtained from
the Softmax layer of the generator, the final one-hot results
corresponding to these two vectors have not changed after
the sampling operation, i.e., one hot(α) = one hot(β) =
[0, 1, 0, 0]. Therefore, identically sampled one-hot vectors are
repetitively fed to the discriminator, making the gradients
calculated by the discriminator ineffective, as the generator
loses its convergence direction.

In order to prevent the vanishing gradient problem in
discrete data, a reparametrization trick is introduced to separate
the uncertainty of the discrete variables, making it possible to
apply gradient propagation through intermediate nodes that
were previously not differentiable.

For a mathematical view, consider a computation graph
consisting of a discrete sample variable z whose distribution
depends on parameter θ and a loss function f(z), the ob-
jective expected loss L(θ) = Ez∼pθ(z)[f(z)] is anticipated
to be minimized to achieve improved model performance via
gradient propagation mechanisms, for which the estimate for
∇θEz∼pθ(z)[f(z)] is prerequisite. However, there is no oppor-
tunity for end-to-end learning because of this discrete sampling
step. In this scenario, we can leverage a reparametrization trick
to deploy a deterministic function g of the parameters θ and an
independent random variable ε to compute the discrete sample
z directly, i.e., z = g(θ, ε). Hereafter, the path-wise gradients
from f to θ can be calculated smoothly without any obstacle:

∂

∂θ
Ez∼pθ [f(z)] =

∂

∂θ
Eε[f(g(θ, ε))] = Eε∼pε

[
∂f

∂g

∂g

∂θ

]
.

(12)
As we mentioned before, discrete data has difficulty fa-

cilitating gradient propagation during the adversarial train-
ing procedure. Thus, the Gumbel-Max trick [39], [40], a
reparametrization technique, is employed to instead sample

(a) one hot (b) τ = 0.1 (c) τ = 0.5

(d) τ = 1 (e) τ = 5 (f) τ = 10

Fig. 3. The influence of different values of temperature τ on the Gumbel-
Softmax distribution. For low temperature, the expected value of a Gumbel-
Softmax approaches the expected one hot encoding. As the temperature
increases, the expected value converges to a uniform distribution.

from a categorical distribution. Given the sampling probabili-
ties for each category κ1,κ2, ...,κ|E| which are as known as
the output of the generator in our proposed framework, the
samples can be expressed as:

y = one hot

(
arg max
1≤i≤|E|

[logκi + gi]

)
, (13)

where κi is the i-th element of κ and g1, g2, ..., g|E| indicate
independent and identically distributed samples drawn from
a standard Gumbel distribution, i.e., gi ∼ Gumbel(0, 1).
This distribution can be sampled utilizing inverse transform
sampling by gaining u ∼ Uniform(0, 1) and computing g =
− log(− log(u)). So far the arg max manipulation in Equation
(13) is still non-differentiable. We relax the discreteness by
applying the Softmax function as a continuous, differentiable
approximation to further approximate arg max, and calculate
a modified |E|-dimensional sample vector ŷi:

ŷi =
exp ((log (κi) + gi) /τ)∑|E|
j=1 exp ((log (κj) + gj) /τ)

. (14)

Here, τ > 0 is a controllable hyper-parameter referred to
as the inverse temperature. As the temperature τ approaches
0, samples from the Gumbel-Softmax distribution equal one-
hot vectors and the Gumbel-Softmax distribution becomes
identical to the categorical distribution. Figure 3 shows the
influence of the temperature τ on sampling results. The
probability density function of Gumbel-Softmax distribution
is defined as follows:

pκ,τ
(
ŷ1, . . . , ŷ|E|

)
= Γ(|E|)τ |E|−1

 |E|∑
i=1

κi/ŷ
τ
i

−|E| |E|∏
i=1

(
κi/ŷ

τ+1
i

)
.

(15)
Now ŷ can be differentiated with respect to log(κ), we can

directly apply this ŷ as the output of the generator, which
also in turn serves as the input of the discriminator. The
addition of the Gumbel-Softmax function ensures that the
entire model can be continuously trained and improved using
back propagation and chain rules. The generator can smoothly
generate negative samples without worrying about the issue of
vanishing gradients.
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B. TKG embedding discriminator

The temporal knowledge graph embedding discriminators
constructed in our framework are directly adopted from previ-
ous TKGE models, so that the performance differences of the
same models on different training modes can be compared in-
tuitively and clearly. As described in Section II, different tem-
poral knowledge graphs have individual structures as well as
scoring functions. Unlike previous embedding models where
the negative samples were generated by random sampling from
the entire set of entities, we apply an adversarial learning
framework to construct more reasonable negative samples to
refine the performance of embedding model. Compared with
previous models, our framework does not need to modify the
original embedding model’s structure, but only changes the
conventional sampling pattern via adversarial learning. In this
fashion, the experimental results can be directly contrasted
with the original model to verify the impact of the proposed
framework on model performance.

C. Generator architecture

The focus of this article is to compare the impact of
different negative sampling schemes on model performance
under identical conditions. For the above objective, we utilize
the existing TKGE methods directly in the discriminator, and
also limit any modification to the embedding models in the
generator to ensure that the experimental results solely reflect
the effect of the sampling scheme.

Due to its representative and easily reproducible characters,
TTransE is employed as the backbone of the generator. The
input of this module is composed of four parts: an entity, a
relation, a timestamp and a position indicator which is used
to indicate whether the missing entity is a head or a tail
entity. First, the entity, relation and timestamp are initially
represented via specific feature space vectors through their
respective embedding transformation matrix, the embedded
vectors of entity, relation and timestamp are concatenated
with the position indicator, and they are fed into a linear
and Gumbel-Softmax layer to obtain the candidate entity. This
entity is associated with the input of the generator including
head entity and relation to form the corrupted fact. These
generated negative samples are then fed into the discriminator
along with positive samples for the final entity and relation
embedding matrices.

D. Training strategy

The training procedure of the adversarial learning frame-
work consists of two main aspects: (1) the update of parame-
ters φ in the discriminator D; (2) the update of parameters θ
in the generator G.

The discriminator network D(x;φ) is designed to identify
the authenticity of a given sample, i.e., to determine whether
sample x is from the real distribution pr(x) or from the
generated distribution pη(x). Using label y = 1 for positive
samples and y = 0 for negative samples, the output of
the discriminator represents the likelihood that the input x
belongs to the true sample distribution. Given a sample (x, y),

y = {0, 1} denotes the authenticity of this sample. The goal
of the discriminator network D(x;φ) is minimizing the cross-
entropy objective function:

minLD = min
φ
− (Ex[y log p(y = 1 | x)

+(1− y) log p(y = 0 | x)]) .
(16)

If the actual distribution p(x) is a mixture of the real sample
distribution pr(x) and the generated sample distribution pη(x)
in equal proportion, then Equation (16) can be reformulated
as:

minLD = min
φ
−(Ex∼pr(x)[logD(x;φ)]

+ Ex′∼pη(x′)[log(1−D(x′;φ))])

= min
φ
−(Ex∼pr(x)[logD(x;φ)]

+ Ez∼p(z)[log(1−D(G(z; θ);φ))]).

(17)

where G(z; θ) is the generator network. The objective of the
generator network G(x; θ) is the opposite of the discriminator,
which needs to make every effort to “fool” the discriminator
into believing that the samples constructed by the generator
are “real” facts. Therefore, its loss function is defined as:

minLG = min
θ

(
Ez∼p(z)[log(1−D(G(z; θ);φ))]

)
= max

θ

(
Ez∼p(z)[logD(G(z; θ);φ)]

)
.

(18)

Once we obtain the optimization objectives of the generator
and the discriminator separately, we can merge them into
a single whole. In this way, the objective function of the
whole generative adversarial network can be viewed as a
minimization maximization game,

LGAN = min
θ

max
φ

(
Ex∼pr(x)[logD(x;φ)]

+Ex′∼pη(x′)[log(1−D(x′;φ))]
) (19)

Compared with a single-objective optimization task, the
generative adversarial structure fields two networks with op-
posing optimization goals. Seen together, practitioners need
to spend a lot of effort to balance the performance of the two
networks, which is why generative adversarial networks are
brittle and difficult to train. In addition, the generative power
should neither be too strong nor too weak for the generator.
If it is too strong, it will make it difficult for the discriminator
to distinguish truth from falsity, and if it is too weak, it will
make it extremely easy for the discriminator to distinguish
truth from falsity. Either situation leads to poor performance of
the discriminator and may be further accompanied by pattern
collapse, resulting in a lack of diversity in the generated
samples.

The main reason for this phenomenon is that the original
generative adversarial network uses Jensen-Shannon diver-
gence (JS divergence) as a measure of similarity between the
real and generated sample distributions. Assuming that the
real and generated sample distributions are known, the optimal
discriminator D?(x) can be formulated as:

D?(x) =
pr(x)

pr(x) + pη(x)
. (20)
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We can substitute the optimal discriminator D?(x) of
Equation (20) into Equation (19), and it becomes:

L (G | D?) = Ex∼pr(x) [logD?(x)]

+ Ex∼pη(x) [log (1−D?(x))]

= Ex∼pr(x)

[
log

pr(x)

pr(x) + pη(x)

]
+ Ex∼pη(x)

[
log

pη(x)

pr(x) + pη(x)

]
= 2JS (pr, pη)− 2 log 2.

(21)

Here, JS(·) indicates the JS divergence. From the above
formulation, it can be demonstrated that the generator loss
defined in GANs can be transformed to minimize the JS diver-
gence between the real and the generated sample distribution
with the optimal discriminator. When the two distributions
are the same, the JS divergence between them becomes 0,
so the corresponding loss is L (G | D?) = −2 log 2. However,
when the two distributions have no overlapping part or the
overlapping parts are negligible, the JS divergence between
them becomes fixed constant of log 2, and does not vary
with the distance between the two distributions. This situation
means the partial derivative (i.e., the gradient) of the loss
function with respect to the generator parameters θ is 0, i.e.,
∂L (G | D?) /∂θ = 0, causing the gradient to vanish. This
issue makes the original GAN difficult to train, the generator
model collapses, and the generated negative samples lack
diversity.

The above section argues that the JS divergence is not an
appropriate choice for measuring the distance between the real
sample distribution pr(x) and the generated sample distribu-
tion pη(x). Inspired by Wasserstein GANs [41], this paper
utilizes Wasserstein distance (also known as Earth Mover
distance) as a more robust and efficient measure to replace
the original JS divergence, and thus optimizes the whole
adversarial network. Given a real sample distribution pr(x)
and a generated sample distribution pη(x), the Wasserstein
distance between them can be defined as:

W (pr, pη) = inf
γ∼Π(Pr,Pη)

E(x,y)∼γ [|x− y|], (22)

where Π (Pr, Pη) is the set of all possible joint distributions
with marginal distribution γ(x,y). The difference between the
Wasserstein distance and the JS divergence is that the JS diver-
gence is constant when there is no or only negligible overlap
between the two distributions, but the Wasserstein distance has
the capability of varying with the distance between the two
distributions without overlapping, making it more suitable for
our method.

Although Wasserstein distance has so many advantages,
Equation (22) cannot be calculated directly, it needs to be
converted into a solvable form by the Kantorovich-Rubinstein
duality theorem [42]. According to this theorem, the Wasser-
stein distance can be transformed into an upper bound on
the expected difference between these two distributions for a

function, satisfying the K-Lipschitz continuum. Equation (22)
can be rewritten as:

W (pr, pη) =
1

K
sup

‖f‖L≤K

(
Ex∼pr(x)[f(x)]− Ex∼pη(x)[f(x)]

)
,

(23)
where f(·) is the K-Lipschitz function, that satisfies the
following condition:

‖f‖L , sup
x 6=y

|f(x)− f(y)|
|x− y|

≤ K. (24)

A function is a Lipschitz continuous function if it is
differentiable and its derivatives are bounded. Because the
discriminator network D(x;φ) (the expected TKGE model)
satisfies the above conditions, it enables us to approximate
the upper bound in Equation (23) to :

minLD = min
φ
−
(
Ex∼pr(x)[D(x;φ)]− Ex∼pη(x)[D(x;φ)]

)
= min

φ
−
(
Ex∼pr(x)[D(x;φ)]− Ez∼p(z)[D(G(z; θ);φ)]

)
.

(25)
The goal of the generator network LG is to minimize

the Wasserstein distance between the real distribution pr(x)
and the generated distribution pη(x), letting the constructed
negative samples achieve the highest possible discriminator
scores. The optimization objective of the generator is shown
below:

minLG = min
θ
−Ez∼p(z)[D(G(z; θ);φ)]. (26)

Because D(x;φ) is an unsaturated function, the gradient
of the generator network parameter θ does not vanish, which
theoretically solves the problem of unstable training of the
original GAN and alleviates the mode collapse problem to a
certain extent, making the generated samples more plausible
and diverse. The detailed training process of this adversarial
framework for temporal knowledge graph embedding is de-
scribed in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first introduce five experimental datasets
in detail, then describe important parameter settings and
basic comparison methods for our experiment. Afterwards,
a link prediction task is constructed to compare and verify
performance of the presented framework with benchmarks and
state-of-the-art models. Next, the presentation of experimen-
tal results and corresponding quantitative analysis prove the
validity of our model. Finally, we provide a visual inspection
of qualitative example outputs to allow for a more intuitive
comprehension of the capacities of our framework.

A. Datasets

We evaluate our framework on five large temporal knowl-
edge graph embedding benchmark datasets, namely ICEWS14,
ICEWS05-15, GDELT, Yago11k and Wikidata12k. Table I
gives a summary of key dataset statistics. A detailed descrip-
tion of these datasets is shown below:
• ICEWS14 and ICEWS05-15 [33] are the two most

common TKG benchmarks extracted from the large-scale
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Algorithm 1: The framework based on adversarial
training with Wasserstein distance for temporal knowl-
edge graph embeddings.

Input : The set of positive facts Ω = {(s, p, o, t)},
the number of training iterations e, the
number of discriminator iterations per
generator iteration ndis, mini-batch size m,
the learning rate of the generator α, the
learning rate of the discriminator β.

Output: Entities and relations embeddings learned by
the discriminator D.

1 Initialize the generator G with parameters θ0, the
discriminator D with parameters φ0;

2 for k = 1, · · · , e do
3 for n = 1, · · · , ndis do
4 for i = 1, · · · ,m do
5 L

(i)
D = −[D(x(i);φ)−D(G(z(i); θ);φ)] ;
// Update the discriminator

by minimizing L
(i)
D .

6 end
7 fφ ← ∇φ 1

m

∑m
i=1 L

(i)
D ;

8 φ← φ− β ·Adagrad (φ, fφ);
9 end

10 for i = 1, · · · ,m do
11 L

(i)
G = −D(G(z(i); θ);φ); // Update the

generator by minimizing L
(i)
G .

12 end
13 hθ ← ∇θ 1

m

∑m
i=1 L

(i)
G ;

14 θ ← θ − α ·Adagrad (θ, hθ);
15 end
16 Return Entity and relation embeddings incorporating

temporal information.

event-based database, Integrated Crisis Early Warning
System (ICEWS), which curates socio-political temporal
facts starting from 1995. ICEWS14 contains political
events with specific time points in 2014, and ICEWS05-
15 stores occurrences during 2005-2015. These two
datasets are constructed by seleceting the most frequently
occurring entities in the graph.

• GDELT [43] is derived from a larger Global Database
of Events, Language, and Tone (GDELT) knowledge
graph that contains temporal facts about human behavior
starting from 1979. This benchmark dataset is a subset
of the unabridged GDELT. It contains facts with time
annotations between April 1, 2015 and March 31, 2016,
and only absorbs quadruple facts involving the 500 most
frequent entities and 20 most common relations.

• Yago11k and Wikidata12k [32] are Yago3 and Wikidata
subsets with temporal information filtered from large gen-
eral knowledge graphs. The events recorded in Yago11k
span a period of 3, 275 years, the period in Wikidata12k
is 2, 001 years.

As shown in Table I, the time span of ICEWS14, ICEWS05-
15 and GDELT is 1 year or 11 years, we can apply one

day as the time granularity to obtain fine-grained timestamps
for this category of datasets with a short period. However,
different from these datasets, the time span of Yago11k and
Wikidata12k is much greater. Furthermore, there is an imbal-
ance issue that might occur in terms of the number of facts
in a particular interval. For example, relatively few events are
recorded in Wikidata12k’s, [1791− 1815] period, while some
intervals (for example the single year 2012) are populated with
numerous facts. Uniform division of timestamps by day or year
would lead to considerable dispersion of timestamps, which is
not conducive to effective model training.

We follow the time-division strategy utilized in TeLM [36]
that defines a minimum threshold to guarantee there will be
enough events in each time interval for Yago11k and Wiki-
data12k. As illustrated in Table I, we finally divide timestamps
in 118 buckets in Yago11k, and 125 buckets in Wikidata12k.

B. Comparison methods

In order to comprehensively evaluate whether our proposed
framework is effectively and consistently improving the per-
formance of existing models, we select several representative
TKGC models as baselines to be compared with our frame-
work. These benchmarks are described as follows:
• TTransE [31] represents entities, relations and times-

tamps in a uniform low-dimensional feature space, and
regards relations as translation calculations to concatenate
the entities and timestamps.

• TA-DistMult [33] leverages LSTM networks to trans-
form temporal information to time-aware representations,
then the embedding vectors process relations to form
time-aware relation embeddings for score function.

• De-SimplE [34] proposes an alternative temporal entity
embedding model in which each fact and its associate
timestamp are dynamically projected to time-aware hid-
den vector.

• TeRo [35] defines the time-aware evolution of entity
embeddings as a rotation in complex vector space, it
acquires time-specific entity embeddings by interpreting
timestamps as an element-wise rotation.

• TeLM [36] employs multivector embeddings from asym-
metric geometric products to model entities, relations, and
timestamps for temporal knowledge graph representation.

• BoxTE [37] integrates relations and timestamps via a
time-dependent matrix, and follows static box embedding
patterns to accomplish the representation of temporal
knowledge graph.

C. Evaluation Metrics

We evaluate our proposed framework on a link predic-
tion task over the above-described temporal knowledge graph
benchmarks. The goal of this characteristic task is to infer
a held-out entity when given an existing entity, relation and
timestamp query. More precisely, the target of time-aware link
prediction is to predict the missing head entity s if given
(p, o, t) or predict tail entity o given (s, p, t). Results are
acquired by ranking discriminator scores.
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TABLE I
STATISTICS OF THE DATA SOURCES.

#Entities #Relations #Timestamps #Train #Valid #Test Peroid Instance of timestamps

ICEWS14 7,128 230 365 72,826 8,963 8,941 1 year 2014-01-11
ICEWS05-15 10,488 251 4,017 386,962 46,092 46,275 11 years 2012-05-19
GDELT 500 20 366 2,735,685 341,961 341,961 1 year 2015-10-08

Yago11k 10,623 10 118 16,406 2,050 2,051 3,275 years (1784, 1790)
Wikidata12k 12,554 24 125 32,497 4,062 4,062 2,001 years (1826, 1840)

For each quadruple (s, p, o, t) in the test dataset, the true
head entity (or tail entity) is circularly replaced by all entities
in the entity set E. Then, the scores associated with all
quadruples are calculated, all scores are ranked in descending
order. However, some reconstructed quadruples might coinci-
dentally be authentic in original TKG, resulting in an incorrect
assessment. In order to avoid this situation, following the
convention used in most previous related studies, we apply
the ‘Filtered’ setting to eliminate all reconstructed quadruples
which incidentally exist either in the training, validation, or
test datasets. Finally, there are three major criteria to measure
model performance, low MR, high MRR and high Hits@N%
scores indicate good performance:
• MR: the average rank of the real entities.
• MRR: the mean reciprocal rank of the real entities.
• Hits@N%: the proportion of authentic entities that

ranked in top N . Here, we particularly report the N =
1, 3, 10 scores to validate the performance of compared
methods.

D. Training protocol

We implement baseline TKGE models and our proposed
framework in PyTorch, and utilize a self-adaptive Adagrad
optimizer for the training stage. It is worth noting that the
primary purpose of the experiment is to demonstrate that our
framework has the capability of effectively improving the
performance of the benchmark TKGE models with strong
generalization. Therefore, in this experiment, we do not set
out to achieve optimal performance of each single benchmark
model via exhaustive hyper-parameter tuning, but rather ensure
that hyperparameters take the same value in different bench-
mark models as much as possible. Under such a standardized
architecture, the performance of the models can be more
clearly and intuitively represented.

In our experiments, we choose the well known TTransE
model as the backbone of the generator in the adversarial
framework, and utilize the various above-mentioned embed-
ding methods as the discriminator directly. The main hyper-
parameters in this experiment include the learning rate of
the generator α, the learning rate of the discriminator β, the
dimension of embedding vectors d, the mini-batch size m,
the number of overall training iterations e and the number of
discriminator training iterations per generator iteration ndis.
Following a similar setting in previous research [34], on
ICEWS14, ICEWS05-15, Yago11k and Wikidata12k datasets,
the parameter configurations are {α = 0.001, β = 0.0001, d =
100,m = 512, e = 500, ndis = 5}. On GDELT, the parameter

configurations are {α = 0.01, β = 0.001, d = 100,m =
512, e = 500, ndis = 5}. We select the model via validating
every 100 epochs which gives the best validation MRR.

E. Evaluation results

Table II gives a detailed comparison of the proposed frame-
work and comparative methods on ICEWS14, ICEWS05-15
and GDELT datasets. We can observe that:
• On these three datasets, the temporal knowledge graph

embedding approaches trained via our adversarial frame-
work (indicated as ’F-’) gain a significant performance
boost on all evaluation metrics compared with the corre-
sponding original methods.

• F-DE SimplE and F-TeLM show top performance on
ICEWS14 and ICEWS05-15, F-BoxTE outperforms other
methods on GDELT. Indeed, as shown in Table I, GDELT
is substantially larger than both ICEWS datasets. Such
results also illustrate that BoxTE can capture more tem-
poral patterns and conducive information on large-scale
datasets.

• The early TKG representation learning models, TTransE
and TA DistMult perform poorly in terms of performance
compared with current methods, due to their inherent
limitations in expressiveness. However, the insights from
their works have inspired later researchers to achieve
continuous improvements.

• On ICEWS datasets, the proposed framework can im-
prove the performance by an average of 2.3 and 2 points
of MRR beyond the original methods on ICEWS14
and ICEWS05-15, respectively. Even under the increased
scale of the GDELT that includes 2.7 million training
facts, there is still an average improvement of 1.3 per-
centage points.

Table III gives a detailed comparison of the proposed frame-
work and comparative methods on Yago11k and Wikidata12k
datasets. As can be seen from this table:
• Different from ICEWS14, ICEWS05-15 and GDELT, the

number of training samples is exponentially reduced in
Yago11k and Wikidata12k. In this scenario, our proposed
framework achieves consistent improvements. On both
datasets, it refines the performance of all baseline TKG
embedding models.

• Where the improved DE SimplE and TeLM methods
outperform other models on ICEWS14 and ICEWS05-
15, they also yield the best results on Yago11k and
Wikidata12k while the BoxTE model does not obtain
impressive performance on these small collections.
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TABLE II
EVALUATION RESULTS ON ICEWS14, ICEWS05-15 AND GDELT DATASETS. THE BEST TWO RESULTS AMONG ALL METHODS ARE HIGHLIGHTED IN

RED AND BLUE, AND ARE FORMATTED IN BOLDFACE. ’F-’ INDICATES THOSE MODELS THAT WERE TRAINED VIA OUR PROPOSED FRAMEWORK.

ICEWS14 ICEWS05-15 GDELT
Models

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TTransE [31] 186.58 0.2322 0.0502 0.3356 0.5807 146.08 0.2463 0.0598 0.3585 0.5919 94.00 0.0879 0.0130 0.0976 0.2281
TA DistMult [33] 178.05 0.2938 0.1408 0.3705 0.5967 132.54 0.3474 0.1957 0.4180 0.6576 70.56 0.1676 0.0886 0.1773 0.3203
DE SimplE [34] 272.91 0.4387 0.3214 0.4955 0.6672 150.53 0.4513 0.3301 0.5083 0.6949 65.03 0.1967 0.1165 0.2088 0.3592
TeRo [35] 177.21 0.4091 0.2848 0.4689 0.6572 119.71 0.4276 0.3010 0.4900 0.6789 68.01 0.1710 0.0889 0.1875 0.3281
TeLM [36] 213.12 0.4125 0.3033 0.4886 0.6625 137.10 0.4626 0.3433 0.5287 0.7126 65.26 0.1933 0.1188 0.2109 0.3535
BoxTE [37] 239.36 0.4020 0.2947 0.4798 0.6599 124.83 0.4328 0.3146 0.4910 0.6846 66.83 0.2295 0.1353 0.2359 0.3812
F-TTransE 167.64 0.2381 0.0481 0.3487 0.5966 144.73 0.2483 0.0567 0.3617 0.5957 91.36 0.1068 0.0199 0.1095 0.2401
F-TA DistMult 173.20 0.3476 0.2161 0.3992 0.6259 113.74 0.4011 0.2632 0.4685 0.6713 69.09 0.1727 0.0949 0.1977 0.3322
F-DE SimplE 296.79 0.4504 0.3237 0.4976 0.6753 182.06 0.4680 0.3475 0.5241 0.6990 62.43 0.2141 0.1280 0.2197 0.3789
F-TeRo 176.85 0.4222 0.3075 0.4836 0.6694 112.23 0.4392 0.3154 0.5068 0.6976 65.28 0.1859 0.0958 0.1978 0.3310
F-TeLM 185.01 0.4323 0.3022 0.4956 0.6721 126.58 0.4768 0.3568 0.5378 0.7264 61.11 0.2024 0.1273 0.2185 0.3625
F-BoxTE 192.10 0.4277 0.2986 0.4817 0.6642 108.24 0.4424 0.3166 0.5091 0.6887 62.77 0.2420 0.1473 0.2476 0.4018

TABLE III
EVALUATION RESULTS ON YAGO11K AND WIKIDATA12K DATASETS. THE BEST TWO RESULTS AMONG ALL METHODS ARE HIGHLIGHTED IN RED AND

BLUE, AND ARE FORMATTED IN BOLDFACE. ’F-’ INDICATES THOSE MODELS THAT WERE TRAINED VIA OUR PROPOSED FRAMEWORK.

Yago11k Wikidata12k
Models

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TTransE [31] 796.16 0.1047 0.0299 0.1265 0.2395 490.11 0.2308 0.1340 0.2454 0.4363
TA DistMult [33] 867.27 0.1260 0.0900 0.1350 0.2278 308.07 0.2294 0.1321 0.2501 0.4422
DE SimplE [34] 1651.27 0.1401 0.0912 0.1388 0.2429 483.68 0.2370 0.1418 0.2554 0.4446
TeRo [35] 970.76 0.1320 0.0854 0.1371 0.2259 401.18 0.2105 0.1459 0.2465 0.4372
TeLM [36] 948.50 0.1433 0.0856 0.1413 0.2363 357.36 0.2420 0.1552 0.2665 0.4610
BoxTE [37] 1107.44 0.1334 0.0831 0.1347 0.2330 467.50 0.2231 0.1429 0.2550 0.4438

F-TTransE 678.86 0.1115 0.0357 0.1353 0.2465 184.01 0.2433 0.1402 0.2651 0.4502
F-TA DistMult 1207.56 0.1378 0.0886 0.1401 0.2324 181.07 0.2378 0.1436 0.2566 0.4561
F-DE SimplE 1632.77 0.1495 0.0969 0.1421 0.2493 503.45 0.2474 0.1414 0.2737 0.4631
F-TeRo 1032.86 0.1407 0.0904 0.1466 0.2402 410.08 0.2345 0.1477 0.2597 0.4428
F-TeLM 859.74 0.1481 0.0999 0.1511 0.2450 320.73 0.2535 0.1608 0.2817 0.4808
F-BoxTE 1044.65 0.1395 0.0886 0.1439 0.2387 434.96 0.2319 0.1442 0.2659 0.4682

• On the Yago11k dataset, the proposed framework can
improve the performance by an average of 5.1% of
MRR beyond the original methods, and gain an average
improvement of 5.6% of MRR on Wikidata12k.

• To summarize both tables, we observe that the method
which achieves good results in MR does not perform well
in the rest metrics. In other words, the model performance
aspect reflected by MR is different from the other metrics.
This is why current studies rarely uses MR as a metric
for measuring the performance of models.

V. DISCUSSION

In the following, we focus on analyzing and discussing the
influence of some specific modules and parameters on model
performance via ablation studies and demonstrate the effect
of the proposed framework more graphically, include a visual
representation of the embedding model and an illustration of
some negative samples generated by random and generator
sampling schemes.

TABLE IV
EVALUATION RESULTS CORRESPONDING TO DIFFERENT GENERATOR
BACKBONE METHODS ON ICEWS14 DATASET. THE BEST RESULT IS

FORMATTED IN BOLDFACE.

Generator
MR MRR Hits@1% Hits@3% Hits@10%

F-TTransE

TTransE-based 167.64 0.2381 0.0481 0.3487 0.5966
TA DistMult-based 183.47 0.2320 0.0454 0.3428 0.5817

DE SimplE-based 191.29 0.2323 0.0645 0.3194 0.5619

F-TA DistMult

TTransE-based 173.20 0.3476 0.2161 0.3992 0.6259

TA DistMult-based 185.19 0.3452 0.1920 0.3994 0.6380
DE SimplE-based 187.58 0.3501 0.2112 0.4125 0.6352

F-DE SimplE

TTransE-based 296.79 0.4504 0.3237 0.4976 0.6753

TA DistMult-based 312.94 0.4561 0.3378 0.5171 0.6929
DE SimplE-based 304.42 0.4574 0.3395 0.5177 0.6904
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Fig. 4. Results of F-TTransE, F-TA DistMlut and F-DE SimplE with different embedding dimensions on MRR, Hits@1, Hits@3 and Hits@10 metrics.

A. Model variants and ablation studies

In the above, we employ a simple TTransE model as the
generator, in this section, investigate the impact of generators
with different TKGE methods on the overall performance of
the framework. Table IV illustrates the experimental results
acquired via replacing the vanilla version of the generator with
other TKGC models, such as TA DistMult and DE SimplE.
We can see that when applying TTransE as the discriminator,
a TTransE-based generator can most effectively improve the
model performance, and a framework involving DE SimplE-
based generators yields the best performance with DE SimplE
discriminators. When the discriminator is TA DistMult or
DE SimplE, we utilize the generator based on TA DistMult
to obtain the best score on Hits@10%.

In general, it is contrary to our intuition that switching
different TKGE generators would not significantly affect the
performance of the proposed adversarial framework. A pos-
sible explanation for this observation might be that the goal
of the generator is to construct plausible negative samples, re-
quiring just enough representation capacity to calculate which
entities are similar to the removed original entities in feature
space to construct negative samples. However, an overpowered
generator may cause the constructed samples to become too
homogeneous, leading to issues such as mode collapse.

The embedding dimensionality is another significant hyper-
parameter for each TKGE model. We conduct a contrast
experiment where we train F-TTransE, F-TA DistMlut and
F-DE SimplE on ICEWS14 for 100 epochs to compare the
impact of different dimensions on the representation perfor-
mance. Figure 4 plots the results of various TKGE model
based frameworks with different embedding dimensions. As
can be seen, although the performance of frameworks is
indeed enhanced as the embedding dimension increases, the
improvement is not significant, which is why we use 100
dimensions as the basis for our core experiments.

B. Visualization

In this section, we highlight the representation capabilities
of the proposed framework in a qualitative manner via two
visualization experiments: an illustration of negative samples
constructed by random sampling versus the generator mode,
and a diagram of TKG embedding vectors.

Traditional random negative samples are compared to gen-
erated ones in Table V. In this table, the quadruples in the first
column are positive, the underlined entities indicate that they

would be replaced by other entities in the next two columns.
The three replacement entities which intend to supersede the
underlined one with random sampling are listed in the second
column, and the entities generated by our framework are
displayed in the third column. It is apparent from this table that
the generator is capable of selecting more plausible entities
as negative samples. For instance, given an authentic quadru-
ple (Mexico,Make optimistic comment, V ietnam, 2014−
12 − 12), the generator adopts three semantically relevant
head entities to replace Mexico, i.e. Iran, Japan and
Government − Italy. All of these entities have similar
attributes and can formally represent a country, making the
constructed facts plausible and potentially deceptive.

When obtaining such high-quality negative quadruples by
our proposed framework, we can train better TKGE mod-
els which have improved generalization and representation
capabilities. As mentioned in Section II, TKGE approaches
are similar to word embedding, following the basic transla-
tion invariance principle that entities with similar connotation
should have similar representations. Dimensionality reduction
via PCA is applied to project the trained entity vectors into a
two and three-dimensional space to demonstrate whether they
satisfy this principle.

Figure 5 shows a diagram of TKG embedding vectors
after dimensionality reduction. We first acquire 343 and 313
temporal embedding vectors associated with entity China and
Japan on the ICEWS14 dataset respectively, and then obtain
a 3D and 2D overview of them via dimensionality reduction in
Figure 5(a) and 5(b). As these two figures show, the vectors of
the two parts, China and Japan, can be completely separated,
while multiple time-series vectors belonging to the same entity
can be tightly clustered together. This result illustrates that the
model trained by our framework can make different semantic
entities occupy different positions in the feature space, and
also ensure that entities with the same semantic but different
temporal information are close to and distinguished from
each other, in accordance with the translational invariance
principle. To further validate the representational effect of our
framework, we perform a more fine-grained partitioning of
the 343 time-series embedded entities about China, marking
them with different colors by month, and use the same
dimensionality reduction technique to yield their 3D and 2D
overviews Figure 5(c) and 5(d). What stands out in the figure is
that these embedding vectors can be aggregated by month and
are distinct from one another in feature space. This illustration
also intuitively supports the effectiveness of the proposed
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TABLE V
SOME INSTANCES OF NEGATIVE SAMPLES CONSTRUCTED BY RANDOM AND GENERATOR SAMPLING MODE FROM THE ICEWS14 DATASET. ALL

RELATIONS ARE SIGNIFIED BY STAR (F).

Positive quadruples Random sampling Generator sampling
Barack Obama Employee – India Businessperson – United States

F Make a visit (2014-04-22) Middle East John Kerry
Malaysia Police – Kenya Yannis Stournaras

Presidential Candidate – Argentina Ministry – Nigeria Foreign Affairs – South Korea
F Consult (2014-10-09) France Military – Philippines

Congress – Argentina Djibouti China

Mexico Member of the Judiciary – Canada Iran
F Make optimistic comment (2014-12-12) Suleiman Abba Japan

Vietnam Catherine Ashton Government – Italy

(a)
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Dec
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(d)

Fig. 5. Diagram of TKG embedding vectors. (a) 3D overview of embedding vectors associated with China and Japan. (b) 2D overview of embedding vectors
associated with China and Japan. (c) 3D overview of embedding vectors of China. (d) 2D overview of embedding vectors of China.

framework from a qualitative perspective.

VI. CONCLUSIONS

This paper presents a new negative sampling strategy that
improves the performance of arbitrary temporal knowledge
graph embedding models. To this end, we present an ad-
versarial learning approach framework based on Wasserstein
distance. To evaluate the performance of our proposed frame-
work, we construct detailed link prediction experiments. The
results on five standard collections confirm that our adversarial
learning approach can significantly improve the performance
of all baseline TKGE models.

Compared to conventional TKG embedding models, this
approach has several significant advantages. First, we intro-
duce an adversarial learning framework to represent TKGs.
The generator is utilized to produce more plausible entities
as negative samples, and these negative quadruples are fed to
the discriminator alongside authentic positive ones to improve
temporal embedding model’s performance. In order to solve
the inherent issue of vanishing gradients on discrete data,
we employ a Gumbel-Softmax relaxation and the Wasserstein
distance for ensuring the entire closed-loop back propagation
process of this framework. Most notably, the work presented
here can be applied to refine the performance of most existing
TKGE models without requiring major modifications.
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