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ABSTRACT: Acute oral toxicity (AOT) is required for the
classification and labeling of chemicals according to the global
harmonized system (GHS). Acute oral toxicity studies are
optimized to minimize the use of animals. However, with the
advent of the three Rs principles and machine learning in
toxicology, alternative in silico methods became a reasonable
alternative approach for addressing the AOT of new chemical
matter. Here, we describe the compilation of AOT data from a
commercial database and the development of a consensus classification model after evaluating different combinations of molecular
representations and machine learning algorithms. The model shows significantly better performance compared to publicly available
AOT models. Its performance was evaluated on an external validation data set, which was compiled from the literature, and an
applicability domain was deduced.

■ INTRODUCTION
The determination of acute oral toxicity (AOT) is an initial test
to evaluate the toxicological characteristics of a chemical. The
Organisation for Economic Co-operation and Development
(OECD) test guideline 423 (December 2001) for the
determination of oral acute toxicity mandates a stepwise
approach with a minimum number of animals per step and the
rat as a preferred rodent species. One important goal of acute
oral toxicity studies is the classification and labeling of the tested
compounds.1 The Globally Harmonized System for Classi-
fication and Labeling of Chemicals (GHS) allows for the
categorization of the acute oral toxicity of a substance into five
categories (Table S1).2,3 Today, the determination of the acute
toxicity of pharmaceuticals is no longer needed;4 however, it is
still required for the assessment of chemicals and agrochemicals
and can provide guidance for worker safety for intermediate
handling during the pharmaceutical manufacturing processes.
Historically, in vivo acute oral toxicity determination could
utilize ten rats dosed with different concentrations of test
compounds.5 Today, the OECD guidelines implemented the
stepwise procedure with 3 animals of a single sex per step.
However, it is still the goal to follow the rule of the Three Rs

6

(replacement, reduction, and refinement) with in vitro7 or in
silico methodologies.
In recent times, machine learning has become increasingly

prominent in predicting toxicological end points8,9 as
toxicological data became more available and several classi-
fication and regression models for predicting acute oral toxicity
were published as a result.10−17

In 2009, Zhu et al.18 published a consensus regression model
trained on 7385 compounds and employing more than 800
descriptors. The model is made available in the toxicity

estimation software tool (TEST) by the US Environmental
Protection Agency (EPA).19 Later, Lei et al.20 described an AOT
consensus regression model based on the relevance vector
machine algorithm to predict logarithmic median lethal dose
(LD50) values. The model is trained on 7413 compounds and
employs molecular descriptors and substructure fingerprints. A
data set of 12,200 compounds for AOT prediction was compiled
by Lai et al.16 The authors employed three graph convolution
neural networks to predict LD50 values andGHS categories. One
year later, Li et al.21 published a classification model for EPA
acute oral toxicity classes22 based on MACCS23 and FP4
fingerprints and a data set of 12,204 compounds. Wu and Wei24

applied element-specific topological and physical descriptors to
predict AOT with single and multitask deep neural networks.
Extremely randomized trees were combined with daylight
fingerprints25,26 to prepare an AOT model named eToxPred by
Pu et al.14 One year later, Minerali et al.5 published an AOT
model which was developed with their proprietary software,
Assay Central. The model utilizes Bayesian models in
combination with extended connectivity fingerprints
(ECFP).27 The model was trained on 8994 compounds, and
the authors reported Matthews correlation coefficients28

(MCC) values between 0.358 and 0.489 for GHS classes 1 to
4. A consensus QSAR model for organophosphates AOT was
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outlined by Wang et al.29 The model employed 50 quantum
chemical descriptors in combination with 206 2D descriptors
and used the extreme gradient boosting (XGBoost) algorithm
for prediction. Mansouri et al.30 reported a consensus AOT
model named CATMoS from a collaborative modeling
initiative, which was trained on 11,992 compounds and made
freely available in the Open QSAR App (OPERA).31,32

Wijeyesakere et al.33 reported a mechanistic AOT QSAR
model in 2023 to predict LD50 values. The model is based on
molecular initiating events describing mechanistic fingerprints
in combination with MACCS fingerprints and uses a random
forest trained on 6234 compounds for prediction of LD50 values.
A regression and classification model for AOT was described
recently by Bo et al.34 The model is based on extended
connectivity fingerprints, which were calculated for 8391
compounds with AOT determined in rats and 5571 compounds
with AOT measured in mice. The authors report MCC values
for the classifier between 0.45 and 0.47. Finally, Ryu et al.35

published a model named predAOT, which is based on multiple
random forest models and classifies compounds into toxic and
nontoxic. Extended connectivity fingerprints were employed as
features, and the model was trained on 6226 compounds with
AOT determined in mice and 6238 compounds with rat AOT.
While many models are described in the literature, the small

training data size used for model creation limits their
applicability domain to a certain chemical space. However,
due to the complexity of interactions between chemicals and
biological systems and several root causes of AOT, bigger data
sets are needed for modeling AOT than for traditional QSAR
modeling. Furthermore, many of the cited models are not made
publicly available, limiting their practical application in the
pharmaceutical industry. Here, we describe the development of
an AOT consensus model for the prediction of GHS categories,
which is trained on a data set of 31,215 compounds.

■ RESULTS
For the compilation of data used for modeling, the Biovia
toxicity database36 was queried for oral acute toxicity measured
in rats. All containing data originated from the Registry of Toxic
Effects of Chemical Substances (RTECS).37 Reported LD50
values were converted to the GHS classes. Molecular structures
were preprocessed by salt stripping and removal of metal−

organic and inorganic structures, as well as compounds with no
defined stereochemistry. Duplicated structures were removed
from the data set, and an initial 3D conformation was generated
for each molecule using CORINA.38,39 These structures were
used as starting points for conformational search using
MacroModel40 with the OPLS4 force field.41 The lowest energy
conformer was further geometry-optimized with the semi-
empirical GFN2-xTB method.42 This workflow resulted in a
data set of 31,215 unique molecules suitable for training
machine learning models.
Class imbalance is a commonly observed problem in

toxicological data sets, which is also present in the data
described. The compiled data set is imbalanced toward the less
toxic GHS classes, with 16.4% of compounds classified as GHS
class 3, 56.4% of compounds associated with GHS class 4, and
22.8% belonging to GHS class 5, while only 1.1 and 3.3%,
respectively, belong to GHS classes 1 and 2 (Figure 1A).
Since the generalizability of a molecular machine learning

model highly depends on the diversity of the training data,
special attention was given to the chemical space covered by the
training data. For the description of the chemical diversity of the
data set, the simple molecular descriptors heavy atom count
(HAC), molecular weight (MW), A log P,43 number of
hydrogen bond acceptors and donors, number of rings,
quantitative estimation of drug likeliness (QED),44 topological
polar surface area, and the fraction of sp3-hybridized carbons
were calculated (Table 1, Figure S1). These descriptors are
easily interpretable and can facilitate the decision of whether
novel chemicals are covered in the training data of the AOT
models. The broad distribution of the calculated features in the
data set suggests a broad coverage of chemical space. Among
compounds belonging to each GHS class, the distributions are
similar (Table S2).
Additionally, chemical diversity was encoded by the

calculation of 1024 bit extended connectivity fingerprints with
diameter 4 (ECFP4) for all compounds, and pairwise Tanimoto
distances were calculated (Figure S2A, the distance matrix of the
data set, and Figure S2B−F, the Tanimoto distance distribution
of compounds in the individual GHS classes). The mean
Tanimoto distance of 0.447 over the whole data set confirms the
overall high chemical diversity, which is necessary for a broad
applicability domain of its derived models. Additionally, ECFP4

Figure 1. Distribution of GHS classes in the data set (A), visualization of the chemical space distribution of the compound data set by t-SNE
(calculated from 1024 bit ECFP4 fingerprints) labeled by GHS class (B), and self-organizing map of the compound data set visualizing compound
clustering labeled by GHS class (C).
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fingerprints were transformed with the t-SNE algorithm45 for
the visual depiction of the distribution of chemical diversity in
the data set (Figure 1B). While clustering of individual
compounds into structural classes can be observed in the figure,
the overall covered chemical space of the data set seems large.
To better visualize the cluster distribution of the data set, a self-
organizing map46 was calculated based on the same fingerprints
(Figure 1C). While compounds belonging to GHS classes 4 and
5 are widely distributed over the map, the more toxic
compounds of GHS classes 1 to 3 are aggregated into clusters,
which can be associated with specific toxicophoric patterns. To
further investigate these structural classes, the compounds
belonging to GHS classes 1 and 2 were clustered using the
Taylor−Butina algorithm,47 and the largest clusters were
analyzed for the maximum common substructure (Figure 2A)
using the FMCS algorithm.48 The largest class of acute oral toxic
compounds are organophosphorus compounds, with 372
structural representatives in the data set. These compounds
are known inhibitors of acetylcholinesterase (AChE)49,50 and
are widely used in agriculture as insecticides, with compounds
like fosmethilan (1) as a well-known representative. The second
cluster of acute oral toxic compounds shares the 2-
trifluoromethylbenzimidazole partial structure, which is found

in 128 compounds in the data set. These compounds are known
uncoupling agents of oxidative phosphorylation51 and com-
monly used as fungicides and herbicides [for example,
chlorflurazole (2)]. The third cluster consists of 114 compounds
that share an (aminooxy)(oxo)methanamine partial structure.
These compounds are known acetylcholinesterase (AChE)
inhibitors and are commonly used as insecticides, acaricides, and
nematicides for plant protection, with aldicarb (3) as a
representative compound. The fourth largest cluster of acute
oral toxic compounds consists of 41 structural analogues of
adenosine. These compounds were investigated as antitumor
agents52 and a representative example structure of this group is
compound 4. Cluster 5 is populated with 33N-nitrosamines like
tauromustine (5) followed by 28 chlorinated cyclodienes in
cluster 6. These compounds were developed as insecticides,
piscicides, and rodenticides and possess high neurotoxicity by
inhibiting calcium ATPases53,54 and GABA receptor.55,56 A
representative compound of this group is endrin (6). The next
most abundant compound class belongs to hexahydroazepino
indole derivatives (e.g., compound 7). The last analyzed cluster
consists of 19 compounds of the oxicam family. These
compounds are cyclooxygenase inhibitors and are used as
nonsteroidal anti-inflammatory agents, with lornoxicam (8) as
an example structure. In summary, this analysis confirms that the
compiled data set covers a broad chemical diversity, and models
trained on it should be applicable to a wide range of substance
classes.
QSAR models rely on the simple principle that compounds

with similar chemical structures possess similar biological
activity. This is often the case in structure activity relationships
(SAR), where the activity relies on a specific molecular
recognition event. However, the cause of acute oral toxicity
can be due to multiple specific and unspecific mechanisms (see
Figure S3 for a selection of compounds with assigned modes of
action), which can result in a flat SAR profile. In addition, small
structural changes sometimes lead to big activity changes.57,58

These activity cliffs are regularly observed in molecular data sets
and can have a huge impact on QSAR model performance.59,60

To investigate the presence of activity cliffs in a molecular data
set, the structure−activity landscape index (SALI) was
introduced.61 When depicted in a heatmap (Figure S4), SALI

Table 1. Description of the Chemical Space of the Dataset
Used for AOT Modelinga

descriptor min max mean

HAC 4 44 20
MW 53 600 293
A log P −4.8 7 2.8
#HBA 0 16 4
#HBD 0 10 1
CN 0 10 2
QED 0.05 0.95 0.62
TPSA 0 285.15 54.25
Fsp3 0 1 0.41

aHAC heavy atom count, MW molecular weight, #HBA number of
hydrogen bond acceptors, #HBD number of hydrogen bond donors,
CN cyclomatic number, QED quantitative estimation of drug
likeliness, TPSA topological polar surface area, and Fsp3 fraction of
sp3-hybridized carbons.

Figure 2. Visualization of the clustering of highly toxic (GHS class 1 and 2) compound structures and the corresponding maximum common
substructure of some clusters (A) and exemplary representatives for substance classes from the largest clusters of highly toxic compounds (B).
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allows for quick identification of challenging compound pairs in
the AOT data set. This plot reveals a rather challenging
structure-activity landscape to model. Quantitatively, the quality
of a QSAR data set can be described with the modelability index
(MODI).62 MODI depends on the fraction of activity cliffs in
the data set, and a cutoff of 0.65 was described for the
developability of high-quality QSAR models. Again, the MODI
of 0.55 calculated for the AOT data set reflects the challenging
task of predicting in vivo toxicity.
When developing molecular machine learning models, the

type of chemical representation has a strong influence on the
predictive performance of the model.63 To investigate a suitable
molecular description for an AOT model, we investigated
molecular descriptors and fingerprint vectors in combination
with gradient-boosted ensemble decision trees and multilayer
perceptrons (MLPs) as well as graph neural network (GNN)
architectures and a large language model trained on the
simplified molecular input line entry system (SMILES). For
the molecular descriptors, three individual sets of descriptors
were employed for modeling. The first set consisted of 2D
descriptors, including simple count-based descriptors, topo-
logical indices, and Shannon entropy descriptors (Table S4).64

The second descriptor set consisted of 3D descriptors such as
molecular surfaces and energies (Table S5). Finally, CATS3D
topological atom-pair descriptors were employed as the third set
of chemical descriptors.65 Additionally, several feature vector
representations were chosen for model generation. These
included extended connectivity fingerprints,27 Mol2Vec,66

continuous and data-driven molecular descriptors (CDDD),67

molecular field points,68 and pharmacophore feature-map
vectors.69 ECFP4 are circular fingerprints, which map the
chemical substructures around a heavy atom by a defined radius
using the Morgan algorithm.70 The Mol2Vec algorithm is
inspired by natural language processing andmapsmolecules into
a high-dimensional embedding space, where vectors of similar
molecules are grouped closely in the vector space. CDDD
vectors are embeddings of an autoencoder neural network which
was trained to translate SMILES to InChI line notations.
Molecular field points are extrema of electrostatic, steric, and
hydrophobic fields derived from the eXtended Electron
Distribution (XED) force field.71,72 Finally, pharmacophore
feature-map vectors are generated by the alignment of
compound conformers to a reference feature map. While tree-
based learners and MLPs require manual feature engineering,
GNNs are a class of representation learning algorithms that
intrinsically generate feature vectors as embeddings from
convolution and aggregation steps during the processing of
the molecular graph. Based on the kind of aggregation function
employed and the possibility to use both node and edge
(corresponding to atom and bond) features (see Table S6),
seven GNN architectures were tested in this work. While
molecules are usually viewed as an undirected graph, the
directed acyclic graph (DAG) model converts this graph to a
series of directed graphs.73 For each atom in the molecule, a
DAG is created, which uses this atom as a vertex of the DAG and
all edges pointing “inwards” to this vertex. The second evaluated
GNN architecture is based on neural graph fingerprints, as
described by Duvenaud et al.74 The graph convolution starts
with a set of descriptors for each atom in the molecule that are
then combined over two convolutional layers. The third GNN
model relies on spectral graph convolutions.75 First, a weighted
sum of the transformed node representations in the graph is
calculated. Afterward, max pooling is applied to the node

representations, the outputs are concatenated, and the final
prediction is done using a MLP. The Weave GNN architecture
employs fuzzy histograms for each dimension of the feature
vector, which are concatenated on the molecule-level
representation.76 Graph attention networks (GAT) employ
the attention mechanism, which allows them to focus on the
most relevant parts of a molecular graph.77 Message passing
neural networks (MPNN) combine node and edge features with
several rounds of message passing.78 Finally, the GINE
architecture is a GNN model which satisfies the Weisfeiler−
Lehmann test.79 Next to GNNs, large language models (LLM),
and in particular the transformer architecture, have made
significant progress in natural language processing.80 The
ChemBERTa model is a BERT-style architecture which was
pretrained on 77 million canonicalized SMILES taken from the
PubChem database.81,82 Subsequent fine-tuning was performed
to predict GHS classes.
For model training, the data set was split into a training and

test portion while stratifying the GHS classes. Splitting was done
by two means: random and scaffold based. While random
splitting does not account for the distribution of chemical
scaffolds in the individual data splits, scaffold splitting employs
Bemis−Murcko clustering to ensure that the individual splits do
not share similar scaffolds.83 This enables evaluation of the
extrapolation capability of the models in different regions of
chemical space unknown to the model. Each splitting strategy
was used in triplicate, using different random seeds. To account
for class differences, an oversampling strategy of the minority
classes was evaluated. For model training, initial hyperparameter
optimization was done using a grid search strategy together with
5-fold cross-validation of the training data. Models were
evaluated based on their Matthews correlation coefficient
(MCC) and the area under the receiver operating characteristics
curve (AUROC) for each GHS class. Individual model
performance is depicted in Tables S7−S10.
The best performance for gradient-boosted decision trees

could be achieved with 2D-molecule vector representations,
followed by 2D descriptors. On the contrary, models based on
3D molecular representation showed lower predictive power,
with molecular field points having the lowest MCC. Addition-
ally, the combination of a 2D vector representation with 3D
descriptors did not improve the predictive power of the 2D
vector-based models, and oversampling to balance the class
distribution of the data did not result in any improvement of the
models. When trained and evaluated on scaffold splits, the
performance of most models dropped significantly except for 2D
pharmacophore vectors, which showed the same MCC as when
trained on random split data.
The MLP models trained on descriptors were significantly

worse compared to their ensemble tree pendants, but when
trained on vector representations, comparable results could be
obtained. Again, the compensation for the class imbalance did
not significantly improve the model’s performance. When
evaluated on scaffold splits, a similar trend could be observed
as for the gradient-boosted decision trees.
Most graph neural networks either outperformed the

ensemble tree and MLP models or showed a similar perform-
ance. Only the DAG and GAT architectures were not able to
predict AOT with an MCC similar to or higher than that of the
best decision tree or MLP models. Again, oversampling did not
influence the model performance on most architectures and, in
fact, decreased model performance in some cases. When
evaluated on scaffold splits, most architectures showed similar
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MCC values compared to random split data, indicating the good
generalizability of these models. Only the two GINE models’
performance decreased significantly.
Lastly, the ChemBERTa transformer model showed

predictive power similar to that of the best-performing ensemble
tree and MLP models and slightly lower performance compared
to most GNN architectures when evaluated on random split
data. On scaffold splits, the model’s performance decreased.
Finally, oversampling of the minority classes did not show any
influence on the predictive power of the model.
Ensemblemodels are known to improve the overall prediction

quality over single models.84 Here, we evaluated both stacking
and majority voting as ensemble classifiers. While majority
voting simply returns the most common class prediction,
stacking employs a metamodel to output a prediction based on
the different single model predictions. Both a logistic regression
and anMLPwere evaluated as meta-models. The following best-
performing models were evaluated for ensemble modeling:
gradient boosting decision trees with ECFP4 fingerprints, MLP
with ECFP4 or CDDD fingerprints, AttentiveFP GNN, GCN
GNN, MPNN GNN, Weave GNN, and ChemBERTa trans-
former. All possible combinations with three to ten models were
assessed. While model-stacking could not significantly increase
predictive performance, employing a majority voting strategy
with five individual model predictions yielded the best predictive
performance (Tables 2 and S11).

To validate the majority voting classifier and investigate the
possible chance correlation of the single employed classification
models, y-randomization was chosen as a strategy.85 For this
purpose, the connection between molecular features and the
GHS class was interrupted by randomly permutating the
compound label while keeping the feature vectors untouched.
Using these data, model building was repeated with the same
parameters as before. Three random permutations were
employed for each model. As shown in Table S12, each
individual model lost its predictiveness for all permutations,
indicating that no chance correlations between features and class
labels are present, and the models learnt meaningful coherences.
To get an impression of the majority voting model’s

performance in comparison to public domain models, we
decided to evaluate the FDA T.E.S.T. tool and CATMos on the
same test splits of the AOT data set used for model building. In
this evaluation, both tools had significantly poorer performance,
with big differences for the individual splits as expressed by the
MCC values of 0.143 ± 0.154 and 0.193 ± 0.173, respectively.
Molecular machine learning models often perform well in

their trained chemical space but struggle when extrapolation
into an unknown chemical space is necessary. A possibility to

address this issue is to define an applicability domain for the
model that quantifies whether a prediction for a certain
compound can be made or not. To investigate a possible
applicability domain for the majority voting classifier AOT
model, we decided to employ two literature data sets.33,86 Both
data sets were combined, and compounds which also appeared
in the training data were removed. The resulting external
validation data set consists of 3793 compounds with a similar
GHS class distribution as the training data (Figure 3A). The
highest Tanimoto similarity of each compound in the external
validation data to all training data compounds was computed
employing either ECFP4 or RDKit fingerprints, and compounds
were binned based on their structural similarity (Figure 3B,C).
Noteworthy similarities were much higher if calculated with the
RDKit fingerprint compared to ECFP4. Predictions on the
validation data were done for the whole data and for subsets,
where compounds were removed based on similarity thresholds.
When the AOTmodel was evaluated on the complete validation
set, a MCC of 0.453 was achieved. When highly dissimilar
structures were removed, prediction quality improved (Figure
3D) and reached aMCC of 0.5 when compounds were removed
with a Tanimoto similarity smaller than 0.5 (ECFP4 fingerprint)
or smaller than 0.6 (RDKit fingerprint). Using these similarity
boundaries would allow predictions for 55.45 and 65.6%,
respectively, of the external validation data set (Figure 3E) and
present a good measure for the applicability domain of the
model.
Evaluating the reliability of machine learning model

predictions is a challenging and active research field. The final
Softmax layer in the classification neural networks produces an
estimate of a probability distribution over the output classes.
These models are, however, well known for being overconfident
in the reported class probabilities. Intuitively, for a perfectly
calibrated model, we expect for 100 predictions with a
confidence level of 80% 80 correctly classified samples. This
perfect relationship can oftentimes not be observed, which can
mainly be explained by the characteristics of modern
architectures, like the number of model parameters, regulariza-
tion, normalization layers, and loss functions.87 Generally
speaking, the class estimates can only be as good as the model
itself, and if the model is wrong, class probabilities can be quite
misleading.
Many approaches have been developed to calibrate these

output probabilities to get more trustworthy predictions that
better align with human intuition.87 These techniques are
mainly based on postprocessing to refine the output distribution
of the final Softmax layer in neural networks.
Even though it is an imperfect measure, Softmax output has

been discussed as performing moderately well in many real-
world scenarios, and therefore, we perform an analysis on the
calibration of the class estimates of the AOT model to assess if
any postprocessing is required.88

In addition to confidence, the measurement of model
uncertainty plays a crucial role in the deployment of machine
learning models into real-world applications. In contrast to
confidence, uncertainty quantification additionally allows the
detection of out-of-distribution (OOD) data, by estimating the
uncertainty in the model parameters (epistemic uncertainty).
Class probabilities are mainly reflecting aleatoric uncertainty,
which is the uncertainty in the data, and therefore they are not
suited for detecting data that originates from a different data
distribution.89 Despite this, it has been shown empirically that
Softmax distributions are suitable as the effective baseline to

Table 2. Metrics of the Best-Performing Ensemble Models

model Acc MCC AUC

majority voting
classifiera

0.741 ± 0.016 0.553 ± 0.033 0.717 ± 0.029

MLP stacking
classifierb

0.695 ± 0.008 0.487 ± 0.009 0.708 ± 0.021

logistic regression
stacking classifierb

0.693 ± 0.004 0.479 ± 0.003 0.701 ± 0.015

aEnsemble model using ChemBERTa transformer, MLP with ECFP4,
AttentiveFP GNN, GCN GNN, and MPNN GNN predictions.
bEnsemble model using ChemBERTa transformer, gradient boosting
decision trees with ECFP4, MLP with CDDD, AttentiveFP GNN,
GCN GNN, MPNN GNN, and Weave GNN predictions.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00056
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00056/suppl_file/ci4c00056_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00056/suppl_file/ci4c00056_si_002.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00056?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


determine out-of-distribution data.90 In many cases, the
prediction probability of incorrect and OOD samples tends to
be lower than that for correct examples.
Based on these findings, we aggregate the class probabilities of

the consensus model and empirically analyze the calibration and
uncertainty prediction abilities of a holdout set with 3793
samples. Figure 4 shows a clear linear trend that suggests that the
model outputs are correctly calibrated. We only display the
confidence levels between 0.3 and 0.9, as no other values were
observed in the test set. The results also indicate that the model

is consistently overconfident, as highlighted by the blue bars,
which is expected based on the previous paragraph.
In summary, the naiv̈e interpretation of Softmax confidence as

a confidence measure provides a useful proxy for faithful
predictions. We also calculate the Tanimoto distance to the
training data and provide this as Supporting Information to
detect the OOD samples.

■ CONCLUSIONS
In summary, we conducted a comprehensive in silico analysis of
rodent acute oral toxicity data from the Biovia toxicity database
and prepared classification models for the GHS categories. We
could show that modeling AOT is challenging because of the
class imbalance toward highly toxic GHS classes, the presence of
different specific and unspecific modes of action causing AOT,
and the presence of activity cliffs in the data. While the choice of
molecular representation had a huge impact on model
performance, addressing class imbalance by oversampling did
not offer any performance improvements. As expected, models
trained on randomly split data showed better performance than
models trained on scaffold splits, indicating the limited
extrapolability of molecular machine learning models. Only
models trained on 2D pharmacophore vectors showed the same
predictive performance on both splitting types, indicating that
this kind of descriptor is an abstract enough description of
chemical space, allowing more reliable predictions on highly
dissimilar compounds. Models trained on features based on 3D
representations of molecules in general performed worse than
2D-based descriptors. This could have its cause in the fact that a
bioactive conformation for the compounds is unknown, and
several conformations could contribute to their toxicity. Using
an ensemble modeling strategy, the predictive performance of
the single models could be improved by applying a majority

Figure 3.GHS class distribution of the external validation data set (A), distribution of the highest Tanimoto similarity of the external validation data set
to the compounds from the data set used for model training calculated with ECFP4 (B) and RDKit fingerprints (C), MCC score (D), and percent of
compounds in the applicability domain (E) of the majority voting consensus model evaluated on the external validation data set using Tanimoto
similarity thresholds to the training data set.

Figure 4. Confidence calibration of the consensus model on a holdout
set with 3793 samples indicated a slight overconfidence in the
probability estimates. Blue bars represent the estimated probability
P(y) by the model, and red bars depict the ground truth confidence
levels.
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voting strategy. This model reached aMCC of 0.55 on randomly
split data, and its performance was compared with two public
domain models on the same data splits, which both performed
significantly worse. Finally, the model was evaluated on an
external validation data set compiled from the literature. Using
this data set, an applicability domain was established based on
fingerprint similarity to the model training data. When the
boundaries of the applicability domain were applied to the
external validation data set, a similar predictive performance to
the test splits of the data used for modeling could be reached.
Overall, this study presents a machine learning-based

modeling strategy for rodent AOT that can help ensure that
3R principles are adhered to and GHS categories for novel
chemical matter can be provided faster andmore cost effectively.
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