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Abstract
Population and public health are in the midst of an artificial intelligence revolution 
capable of radically altering existing models of care delivery and practice. Just as 
AI seeks to mirror human cognition through its data-driven analytics, it can also 
reflect the biases present in our collective conscience. In this Viewpoint, we use past 
and counterfactual examples to illustrate the sequelae of unmitigated bias in health-
care artificial intelligence. Past examples indicate that if the benefits of emerging AI 
technologies are to be realized, consensus around the regulation of algorithmic bias 
at the policy level is needed to ensure their ethical integration into the health sys-
tem. This paper puts forth regulatory strategies for uprooting bias in healthcare AI 
that can inform ongoing efforts to establish a framework for federal oversight. We 
highlight three overarching oversight principles in bias mitigation that maps to each 
phase of the algorithm life cycle.

Keywords Health equity · Artificial intelligence · Machine learning · Health policy · 
Algorithmic bias

Introduction

Artificial intelligence (AI) continues to feature prominently in the health sector by 
way of its ever-growing contribution to population and public health practice, man-
agement, and surveillance [1, 2]. However, just as AI seeks to mirror human cogni-
tion through its data-driven analytics, it can also reflect the biases present in our 
collective conscience. Indeed, a number of algorithms guiding population medicine 
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initiatives, federal healthcare reimbursements, and clinical management have been 
found to discriminate against protected social groups [3–6]. In this Viewpoint, we 
argue that federal authorities should implement a regulatory framework for health-
care AI that incorporates standards to ensure health equity. To support this argu-
ment, we present past and counterfactual examples of racially biased algorithms 
alongside their respective mitigation strategies. It should be noted, however that 
many of the principles described herein with respect to race will also apply to other 
social identifiers such as sex, income bracket, etc. The overarching objective of 
this paper is, therefore, to raise awareness around the important topic of bias in AI 
among health experts and policymakers to guide future oversight directions.

Background

Highly visible examples of biased computation in healthcare, such as race cor-
rections for glomerular filtration rate and pulmonary function, continue to endure 
despite decades of efforts to eradicate them [5]. It could be even more difficult to 
undo algorithmic bias in AI that, due to model complexity and varying degrees of 
artificial intelligence literacy, may not be readily apparent to the user. This idea of 
concealed discrimination is not new to the health sector and can occur regardless 
of intent. Implicit bias is a classic example of this phenomenon. In the context of 
skin cancer, implicit bias contributes to delays in melanoma diagnoses among dark-
skinned patients that translate to worse outcomes [7]. Another example would be 
well-documented disparities in the administration of pain medication on the basis of 
race [8].

In terms of public health at large, this pattern of obfuscation as a means of rein-
venting racism can be illustrated using the concept of the ‘submerged state.’ The 
submerged state makes reference to the use of concealed welfare in the form of fed-
eral disbursements or tax credit programs as an under-recognized means of reinforc-
ing the racial wealth gap [9]. A recent example impacting public health systems in 
the US would be the appropriations of the Coronavirus Aid, Relief, and Economic 
Security (CARES) Act funds using a formula based on lost healthcare facility rev-
enue, a miscalibration of need such that hospitals in communities of color remain 
inadequately reimbursed [4]. Our goal is to avoid the case where unfettered appli-
cations of artificial intelligence in healthcare become a nidus for bias ‘submerged’ 
within the complexity of AI models.

Federal governance

In January 2021, the US Food and Drug Administration (FDA) indicated its intent to 
develop a regulatory guidance for AI in their ‘Artificial Intelligence/Machine Learn-
ing-Based Action Plan,’ an update that follows an earlier FDA discussion paper in 
April 2019 [10]. As of September 2021, however, the FDA has already approved 
a total of 77 artificial intelligence applications under the ‘Software as Medical 
Devices’ (SaMDs) classification for use in clinical settings (see Fig.  1). Pursuant 



Advancing health equity with artificial intelligence  

to section  520(o) of the 21st Century Cures Act, SaMD refers to software that is 
intended to primarily drive clinical decision making or to analyze patient health data 
or medical images [11]. It should be noted that a large proportion of artificial intel-
ligence algorithms are exempted by this definition and are already in widespread 
use throughout the health sector. Therefore, while the establishment of a federal 
guidance for clinical AI that incorporates health equity considerations would set a 
much-needed precedent for fairness in medical informatics, there is no guarantee 
that such a framework would trickle down to the FDA-exempt majority of healthcare 
AI that still influence resource allocation, access to public health services, and medi-
cal care. Limitations in federal authority make it incumbent on developers, public 
health practitioners, and policymakers to also assist in shifting the status quo of bias 
mitigation as a desirable addition to an unequivocal inclusion.

A lifecycle approach to regulation

‘Artificial intelligence’ refers to computational models that automate tasks typically 
performed by humans, and this umbrella term encompasses machine learning algo-
rithms (See Box 1) [12]. From a regulatory perspective, it is critical for policymak-
ers to understand that bias mitigation should not end with AI model development 
but, rather, extend across the product lifecycle. The AI lifecycle moves from model 
development to validation to implementation, with maintenance and updates also 
possible in the post-implementation period. Bias can enter at any point during the 
AI lifecycle. Below, we illustrate key topics in algorithmic bias with strategies to 
address ongoing barriers that should be incorporated into a federal legal guidance 
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Fig. 1  FDA-Approved Artificial Intelligence-based Algorithms as of September 2021
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Box 1  Glossary of key terms

Term Definition

Artificial intelligence (AI) An umbrella term referring to computational technologies that automate 
tasks typically performed by humans

Machine learning A subset of AI that refers to models that can learn from examples without 
the explicit programming of rules

Healthcare AI An umbrella term referring to AI for use in the health sector (i.e., disease 
surveillance, diagnostics and treatment, resource allocation, delivery of 
health services, workflow, etc.)

Protected group Groups that face discrimination due to a shared social characteristic that are 
protected under the federal legal code (i.e., race, gender, age, ability, etc.)

Algorithmic bias An algorithm’s performance, allocation, or outcome for a protected social 
group puts them at a (dis-)advantage with respect to the unprotected social 
group

Health equity The ability of all patients to attain their full health potential is the same 
across all groups [36]

Development Creation of the model: a process that encompasses data pre-processing, 
model training/validation/testing efforts

Validation (regulatory) Assessment of model performance prior to its formal implementation
Implementation Integration of the AI model into the healthcare setting for real-world use
Maintenance Updates made to the AI model after it is in real-world use to assure a contin-

ued high-quality performance
Training A process where the model learns trends or categories from data
Validation (model) A process that confirms the generality of the trained model and explores 

different hyperparameter choices
Testing A process that evaluates model performance on an unseen dataset
Pre-training A process that trains a model on a large, non-specific dataset prior to subse-

quent fine-tuning  on the actual dataset to improve overall performance
Federated learning Each institution trains a model using their home data and the model weights 

are communicated to a centralized server to develop an aggregate model; 
there is no sharing of protected health information

Cyclic weight transfer An institution trains a model using their home data and passes the updated 
model weights to the next institution, the process repeats until all institu-
tions have participated; there is no sharing of protected health information

Bias accounting The process of measuring bias, when applicable to the algorithm’s intended 
use case

Bias mitigation The process of correcting for bias, when applicable to the algorithm’s 
intended use case

Positive predictive value The likelihood that if you screen positive that you actually have the disease
Negative predictive value The likelihood that if you screen negative that you actually do not have the 

disease
Equalized odds No difference in sensitivity and specificity across all groups
Predictive parity No difference in positive predictive value rates across all groups
Demographic parity No difference in positive outcome rates across all groups
Validation (AI lifecycle) Evaluation of model performance prior to formal implementation
Interpretability The degree to which the decision process of AI is understandable to humans
Continuously learning AI AI that can update in real-time to learn from incoming data
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for advancing health equity in AI. We also highlight a key tension: how can we 
account for racial disparities in care access and quality while avoiding the use of the 
social indicator of race to draw inferences about intrinsic human biology? The bias 
mitigation principles described herein are illustrated using broad strokes, as they are 
intended as a general guide for public health practitioners and policymakers. A glos-
sary of key terms can be found in Box 1.

Development

Approaches to bias mitigation in the development phase address data- or model-spe-
cific factors. Below, we describe strategies on both sides of this dichotomy, provid-
ing real-world examples for context.

Data factors

Developers should consider how limitations in data quality can threaten model per-
formance with respect to race. At a minimum, data should include patients from 
various racial backgrounds in cases where failure to account for race is linked to 
known disparities in care. This principle can be challenging in practice, however, 
particularly when working with rare diseases. Take acromegaly, for example, an 
endocrine pathology that results from excess growth hormone production and clas-
sically presents with characteristic changes in facial bone structure. Facial recogni-
tion software with AI is currently being explored for early detection of acromegaly, 
but studies to-date have been performed in exclusively white or asian populations 
[13–15]. The incidence of acromegaly does not change with respect to race, and 
early diagnosis is critical to enhance patient outcomes and quality of life [16]. This 
situation begs the question: how can we improve the availability of racially diverse 
data in order to promote health equity?

Creation of curated, open databases with deidentified or aggregate patient infor-
mation is one excellent solution to combat racially imbalanced data [2]. However, 
this option might not always be feasible for data sharing in facial and skin images, 
geographically linked, or environmental exposure data due to privacy concerns [17]. 
Another option would be to pretrain models with large, non-specific datasets or with 
synthetic data generation to boost the model’s ability to recognize a diversity of 
cases prior to training with the original data (See Box 1) [15]. Finally, collaborative 
training techniques such as federated learning and cyclic weight transfer are just two 
examples of options to boost data availability, as they can allow for model training 
across multiple institutions without transfer of patient data (See Box 1) [18, 19]. To 
promote transparency, developers should document the distributions of patient char-
acteristics for race in aggregate, and they should explain their reasoning for imple-
menting or not implementing techniques to improve the model’s performance with 
respect to race. Finally, developers should think about and convey how any sub-
jective or missing health data, such as entries in the electronic medical record, for 
example, may be coded with preexisting human biases, and how this may affect their 
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model predictions with respect to race. For example, consider a population medicine 
algorithm that identifies patients who might benefit from a specialized community 
chronic pain clinic and associated physical rehabilitation program. If this model uses 
subjective criteria such as provider-reported pain scores, this could bias against peo-
ple of color who are generally perceived as having less pain than their white coun-
terparts [20]. This impact of data reliability on model performance should also be 
subsequently assessed both during model evaluation and implementation using bias-
auditing techniques.

Model factors

Next, we will discuss how bias can be engineered into models by their design. Fail-
ure to account for race in contexts where known disparities are relevant to the algo-
rithm’s intended use case has been repeatedly shown to entrench bias [3, 21, 22]. 
Consider, for example, an algorithm that enrolls patients into high-risk care manage-
ment programs using a risk score [3]. One such widely used, race-blind model was 
found to systematically under enroll black patients, who were sicker than their white 
counterparts for a given risk score [3]. The increased enrollment threshold for black 
patients to gain access to these beneficial programs was due to the effect of proxy 
variables, namely healthcare costs, which were lower in black participants. This 
relationship is believed to be owing to a long-standing lack of trust in the health-
care system and disparities in health access among black Americans. Both of these 
observations are well described in the literature and the latter finding is also con-
sistent with the itemized distribution of healthcare expenses across groups in the 
study [3, 23]. By accounting for race through adjustment of the data label choice, 
the authors were able to correct the algorithm so that placement was adjudicated 
fairly [3].

The above example illustrates how failing to assess how race and other aspects 
of social identity are treated by the model can compromise health equity, and it 
brings us to our discussion of bias accounting. It is important to note that there 
are many metrics that can be used for bias accounting during development (i.e., 
equalized odds, predictive parity, demographic parity, etc.) (See Box  1). Bias 
metric(s) should be carefully selected based on the intended use of a specific 
algorithm as they are not universally compatible [21]. Take, for example, an algo-
rithm that is in compliance with predictive parity such that all groups are selected 
at an identical positive predictive value rate. That same model could dually defy 
the principle of equalized odds such that sensitivity and specificity differ across 
groups. We can revisit our earlier example of implicit bias in the diagnosis of 
skin cancer to illustrate this principle. Let us consider a hypothetical health sur-
veillance image recognition algorithm where patients can take a picture of their 
mole(s) using a Smartphone App to see if they should seek further evaluation to 
rule out malignancy. We ensure that this model is in compliance with predictive 
parity but is later found to disproportionately underpredict dark-skinned patients 
with malignant melanomas as having benign lesions of low concern. How is this 
possible? One interpretation lies in our failure to account for false-negative rates 
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across groups. False negatives represent instances where patients with a malig-
nant lesion are falsely reassured, disparities in which implicit bias is thought to 
contribute to and that we want to avoid replicating in our model [7]. Therefore, 
a metric that limits discrepancies in false-negative rates across groups such as 
equalized odds might be preferred for this algorithm’s intended use case. As this 
process will look differently for each algorithm, it is critical for developers to pro-
vide well-documented evidence and reasoning to justify tradeoffs in chosen bias 
mitigation techniques [3, 21]. Ideally this information would be made publicly 
available in a deidentified format whenever possible, but should, at a minimum, 
be reviewed by those overseeing implementation of the algorithm prior to its use. 
Bias adjustments are to be made in cases where the social impacts of race are 
clearly linked to access, diagnosis, or treatment of your healthcare question, not 
to adjust for or to explain biological variation.

Validation

Model validation on retrospective data alone is not rigorous enough to account 
for biases that can emerge in real-world conditions. Prospective studies in health-
care settings, ideally in the form of a randomized trial, should be federally 
mandated for AI applications with the potential to cause a patient bodily harm 
or death. To navigate the tension between optimizing model performance and 
safety without diminishing incentives to develop new AI, it may be beneficial to 
develop a tiered-risk system linked to specific validation criteria. Regulators can 
look towards AI-reporting recommendations in academia as a reference when for-
mulating validation criteria, as the research community has recently developed a 
number of checklists designed to quantify the robustness of artificial intelligence 
studies [24, 25]. Again, as many AI applications in population and public health 
will be exempt from federal review, we would encourage those overseeing imple-
mentation at their institution or organization to play an active role in upholding 
rigorous validation criteria for algorithms prior to any large-scale rollouts.

Model interpretability is an important step in validation that also doubles as 
a bias mitigation strategy by providing explanations about the ‘inner-workings’ 
of an AI model in a way that is understandable to humans. Briefly, interpreta-
ble AI can be achieved using ‘model-specific’ methods that are constrained to a 
certain model type or broadly adaptable ‘model-agnostic’ techniques [26] (see 
Box 1). Interpretability pipelines can highlight important model logic or features 
at two levels: global methods assess population-level performance, whereas local 
explanations reveal the reasoning underlying a specific model prediction instance. 
Both approaches to interpretability can be useful depending on the intended use 
case and both are becoming increasingly available and computationally affordable 
[26–29]. Developers can use interpretability to detect bias during the validation 
stage because it can highlight when the model is (1) using race when it should not 
be or (2) not using race when it should be in its evaluation of a given dataset or 
input.
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Implementation

Interpretability is also critical in controlling for human factors that can manifest 
during the implementation phase. Users of healthcare AI may, quite reasonably, 
find it hard to trust a model without understanding how it works. This resist-
ance can have the untoward effect of preventing the realization of the equitable 
outcomes that a well-built algorithm was designed to achieve. We feel that the 
healthcare field must move towards interpretability as a standard prerequisite for 
all models slated for real-world implementation, with explanations from devel-
opers for cases in which their implementation is not feasible or reliable. In the 
future, it may be possible to leverage artificial intelligence to automate interpret-
ability pipelines to streamline and promote their use by developers [30].

Interpretability is only part of the story when it comes to the discussion of 
human factors during algorithm implementation [31, 32] Developers should 
attempt to understand why population and public health practitioners choose 
to use or to ignore model recommendations and develop controls for these fac-
tors whenever possible. For example, cumbersome user interface, user fatigue, 
or organizational constraints such as ties to financial reimbursement or liability 
could cause humans to ignore the advice of an unbiased algorithm. Therefore, 
it is important for those overseeing implementation to measure user uptake and 
qualitative user experience (the latter should also take place during development) 
in addition to outcomes data during post-market re-appraisals.

Next, continual bias auditing and surveillance are a key arbiter of equity in the 
implementation phase. Performance and bias checks should be a shared responsi-
bility among healthcare AI developers and end organizations, and they should be 
incorporated into algorithm tuning and maintenance at regular intervals. Checks 
may need to occur more or less frequently depending on the automatic update per-
missions of the algorithm in the real-world setting and the risk to health and safety. 
Regulators should work with involved stakeholders to develop a system that does 
not use overly burdensome reporting requirements that would discourage the use of 
continuously learning AI that can update in real time [33] (see Box 1). A solution 
may also be baked into this problem, as there is a potential to leverage AI for future 
automation of this bias screening process to promote the uptake and frequency of 
surveillance. We would also advocate for the creation of AI task forces at the fed-
eral, state, and local public health levels to spearhead the continuous review of mod-
els for bias and broader quality control in the post-implementation period.

In a related point, the transparency and stewardship of AI algorithms are cur-
rently stymied by a general lack of inventory, and this should be made a priority 
moving forward. For example, as of September  1st 2021, FDA-approved artificial 
intelligence algorithms are currently indexed as approved medical devices with-
out a distinct search filter or database, which has prompted the creation of third-
party databases for tracking (see Fig.  1) [34, 35]. Since many AI applications 
are in use in an auxiliary decision support, allocation, or workflow capacity not 
requiring FDA approval, it is critical for population and public health organiza-
tions to maintain their own dedicated inventories for bias surveillance purposes.
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While the examples outlined in this paper discuss race consciousness and rac-
ism in healthcare AI, many of these principles will also translate to other aspects of 
patient social identity such as sex, religion, and income brackets. Further research 
is needed to determine how best to pick up on bias related to intersectionality and 
to non-discrete identifiers (  such as gender, age, lifestyle, ability, and employment 
sector that are harder to classify, stratify over, and rectify. Still, we envision AI as a 
powerful force for advancing health equity that, if applied with the proper controls, 
can mitigate persistent inequalities that plague our healthcare through fair and unbi-
ased evaluation. Looking ahead, we must develop harmonized standards for health 
equity in AI and make every effort to uphold them at the federal, industry, academic, 
and community levels.
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