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Risk Factors for Pediatric Sepsis in the Emergency Department
A Machine Learning Pilot Study
Laura Mercurio, MD,∗ Sovijja Pou, BS,† Susan Duffy, MD, MPH,∗‡ and Carsten Eickhoff, PhD§||
Objective: To identify underappreciated sepsis risk factors among chil-
dren presenting to a pediatric emergency department (ED).
Methods: A retrospective observational study (2017–2019) of children
aged 18 years and younger presenting to a pediatric ED at a tertiary care
children's hospital with fever, hypotension, or an infectious disease Interna-
tional Classification of Diseases (ICD)-10 diagnosis. Structured patient
data including demographics, problem list, and vital signs were extracted
for 35,074 qualifying ED encounters. According to the Improving Pediatric
Sepsis Outcomes Classification, confirmed by expert review, 191 patients
met clinical sepsis criteria. Five machine learning models were trained to
predict sepsis/nonsepsis outcomes. Top features enabling model perfor-
mance (N = 20) were then extracted to identify patient risk factors.
Results:Machine learning methods reached a performance of up to 93%
sensitivity and 84% specificity in identifying patients who received a hos-
pital diagnosis of sepsis. A random forest classifier performed the best,
followed by a classification and regression tree. Maximum documented
heart rate was the top feature in these models, with importance coefficients
(ICs) of 0.09 and 0.21, which represent how much an individual feature
contributes to the model. Maximum mean arterial pressure was the second
most important feature (IC 0.05, 0.13). Immunization status (IC 0.02), age
(IC 0.03), and patient zip code (IC 0.02) were also among the top features
enabling models to predict sepsis from ED visit data. Stratified analysis re-
vealed changes in the predictive importance of risk factors by race, ethnic-
ity, oncologic history, and insurance status.
Conclusions: Machine learning models trained to identify pediatric sepsis
using ED clinical and sociodemographic variables confirmed well-established
predictors, including heart rate and mean arterial pressure, and identified
underappreciated relationships between sepsis and patient age, immuniza-
tion status, and demographics.
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S epsis is the leading cause of inpatient pediatric mortality, ac-
counting for at least 7% to 9% of all pediatric deaths.1 A sig-

nificant proportion of pediatric patientswho develop sepsis during
hospitalization present to the emergency department (ED) for their
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initial care, with 100,000 children in the United States diagnosed
annually with severe sepsis.2,3 The costs of pediatric sepsis are sig-
nificant not only because of acute care, but also because of the life-
long disability experienced by up to 40% of survivors.1,4–6 Timely
sepsis recognition with prompt antibiotic and fluid administration
are associatedwith improved outcomes,2,7,8 but physicians continue
to struggle in distinguishing clinical signs of organ dysfunction in
children whose abnormal vital signs and examination stem from
evolving sepsis as opposed to pain, fever, or common respiratory
illness.2 Furthermore, the formal definition of sepsis in pediatric
medicine continues to evolve.1,9,10 Building on work by Goldstein
et al, the Children's Hospital Association's Improving Pediatric Sep-
sis Outcomes (IPSO) Collaborative expert panel has developed a
sepsis definition based on “intention-to-treat” parameters, produc-
ing the following classification: patients with infection, patients
“at risk” for sepsis, patients with sepsis, and those with “critical
sepsis”, including shock. Patients were sorted into these catego-
ries according to clinical indicators such as fluid administration,
vasopressor use, and serologic signs of ongoing organ dysfunc-
tion after initial treatment.11

Machine learning—a subset of artificial intelligence—is an
innovative method for risk factor identification because it provides
researchers with 2 distinct advantages: the ability to rapidly process
large data sets and construct models that account for complex non-
linear relationships between patient features, time-course, and out-
come. Recently, researchers have applied machine learning to pre-
dict pediatric sepsis onset and associated organ dysfunction, but
these studies have occurred mainly in severely ill patients in the in-
tensive care unit setting12–14 because of the sparsity of data in other
clinical environments. Scott et al15 were among the first to apply
machine learning to an ED data set to formulate a predictive model
identifying septic shock among children meeting clinical sepsis
criteria, whereas Goto et al16 applied machine learning to a larger
pediatric emergency department (PED) population to assess tradi-
tional triage systems and predict those patients ultimately requiring
critical care. Very few studies have evaluated the full breadth of
structured clinical and sociodemographic variables available from
ED encounters to determine their significance in identifying patient
characteristics predicting pediatric sepsis.

In this study, we apply machine learning models to patients
aged 0 to 18 years presenting to a PED with fever, hypotension,
or infectious complaint. Our primary aimwas to model those aspects
of children's health status and physiologic state available during ED
care that were most associated with a sepsis diagnosis during hospi-
talization. We hypothesized that broad consideration of structured
ED clinical data elements, including those associated with underlying
health status, would identify prevalent patient sepsis risk factors. Our
secondary aim was to apply machine learning to identify additional
sociodemographic factors that may contribute to health disparities
in patients diagnosed with sepsis.
METHODS
We performed a single-center derivation study to build and

internally validate a machine learning model predicting an
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encounter-level diagnosis of sepsis among children presenting to
a PED. We then examined the model's contributing features with
the goal of identifying pediatric sepsis risk factors. This study
was approved by the institutional review board of the Lifespan
Healthcare system.

Population Selection
The study population included patients aged 0 to 18 years

presenting to a pediatric tertiary care children's hospital ED from
January 1, 2017 through January 1, 2019 (Fig. 1). Those individuals
with a chief complaint of fever, documented fever greater than
100.4°F, age-adjusted hypotension, or an infectious disease diagno-
sis based on International Statistical Classification of Diseases and
Related Health Problems (ICD-10) (N = 35,047, Appendix B,
http://links.lww.com/PEC/B54) were included. Those patients ad-
mitted directly to an inpatient service from an outpatient clinic, or
transferred directly from an outside hospital, were excluded due to
data access limitations. Patient encountersmeeting inclusion criteria
were then divided into 2 main outcome categories based on criteria
set by the IPSOCollaborative (see Outcome Classification section).

Feature Extraction
All readily available, structured electronic health record data in

EPIC (Epic Systems, Verona, WI) were extracted for each qualifying
patient encounter using structured query language (Fig. 1). The initial
data set included vital signs, pediatric clinical scoring tools (eg, pedi-
atric early warning score), intake/output, sociodemographic informa-
tion, patient problem list, physician orders (eg, medications, fluids),
and laboratory studies occurring in at least 1% of encounters.

Final feature categories included the following 76 variables
(see Appendix D, http://links.lww.com/PEC/B54 for full listing):

- Sociodemographic information (N = 10) – eg, insurance, immu-
nization status, race, ethnicity. Patients are asked to self-identify
race and ethnicity at the time of registration.
FIGURE 1. Patient encounter inclusion flow diagram.
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- Patient Baseline Problem List (N = 21) – aggregated into organ
system-based clinical classification software (CCS) code cate-
gories from 3496 unique raw ICD-10 codes

- Emergency Department Nursing Flow Sheets/Vital Signs
(N = 45) – eg, heart rate (HR), blood pressure (BP), pulse oxim-
etry, capillary refill measured while in the ED
Feature Selection andMissing Data
After initial feature extraction, nursing flow sheets and vital

signs were limited only to those obtained during the patients' time
in the ED. The study team then removed those features representing
actions taken by the ED provider in response to the patient's condi-
tion, such as laboratory studies, clinical scoring systems, medica-
tion orders, imaging, and procedures. These data were removed to
examine the relationship between sepsis and patients' sociodemo-
graphic factors, baseline vital signs and medical problems, and
physiologic responses to ED treatments rather than to specific in-
terventions or treatments.

Diagnostic codeswere also obtained for each patient encounter.
All available sociodemographic features and patient problem lists
were considered for inclusion. These features included all informa-
tion available at the time of data extraction; these could include prob-
lems added after the qualifying encounter. The ICD-10 problem list
was obtained for each patient visit, and these features were consoli-
dated into the 21 categories of the CCS, which are organized by
organ system17 (Appendix C, http://links.lww.com/PEC/B54).

We included those vital sign features occurring in at least 4%
of all patient encounters. Vital sign values included the first, last,
minimum, mean, and maximum values for HR, diastolic BP, sys-
tolic BP,mean arterial pressure (MAP), respiratory rate, pulse oxim-
etry, and body temperature. Mean arterial pressure was calculated
from extracted data using the following formula: (⅔ � diastolic
BP) + (⅓ � systolic BP). Missing vital sign values were imputed
using standard vital sign ranges for age according to the pediatric
advanced life support algorithm published by the American Heart
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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Association.18 Blood pressurewas the most commonmissing value
at 1.6% of a representative subsample; other vital signs had less
than 0.4% missing values.

For nursing clinical scoring systems—eg, pediatric respiratory
score, Glasgow coma score, and pediatric asthma severity scores—
missing values were coded as a 0, whereas those with documented
scores included those values greater than 0. A small number of pa-
tient encounters included nursing evaluation checklist values for
“tachypnea”, “tachycardia”, “altered capillary refill”, and “altered
mental status” documented in the chart—if these were present, they
were coded as a 1, otherwise all values were coded as 0. Additional
mandatory nursing documentation such as central line–associated
bloodstream infection evaluation and total parenteral nutrition were
coded as binary variables, with 1 representing the evaluation took
place and 0 if it did not occur.

On ED arrival, the triage nurse documents a patient's current
immunization status; this information is entered into the electronic
health record as a structured variable. Immunization status, “UTD
Immunization”, was therefore categorized as a ternary variable in
which 0 represented not up-to-date, 1 represented up-to-date, and
2 represented unknown/not documented vaccination status. Health
insurance was coded as a ternary variable using public, private,
and unspecified categories. All patients had a documented home
zip code. Other sociodemographic and baseline problem list data
were coded as binary variables; for example, if the patients did not
have a particular problem, the value was recorded as a 0. Data
points were then transformed into a Gaussian distribution with 0
mean and unit variance.

Outcome Classification
All encounters meeting IPSO sepsis treatment criteria for sep-

sis or critical sepsis underwent chart review by a pediatric sepsis ex-
pert to confirm the outcome of interest. Expert outcome classifications
were compared against available ICD-10 diagnoses and underwent a
secondary review by another clinical expert if the outcome category
was unclear (Appendix A, http://links.lww.com/PEC/B54). Patient
encounters were assigned to 1 of 4 IPSO expert consensus outcome
categories, which were combined to create a binary sepsis versus
nonsepsis outcome for ED patients requiring admission:

• Infection or At-Risk (N = 34,883 ED encounters)

a. Infection: patients with an infectious diagnosis, without meet-
ing other criteria.

b. At Risk for Sepsis: patients with infection in which a blood
culture is obtained and antibiotics are given within 24 hours.
They could receive up to 20 mL/kg of isotonic fluid within
6 hours of antibiotics.
• Sepsis or Critical Sepsis/Septic Shock (N = 191 ED encounters)
FIGURE 2. Data collection and machine learning model workflow.
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a. Sepsis: patients with infection with initial organ dysfunction
that responds to ED treatment. They received treatment with
intravenous antibiotics, at least two 20 mL/kg isotonic fluid
boluses, within 6 hours of presentation.

b. Severe Sepsis/Septic Shock: patients presenting with evidence
of infection with organ dysfunction not responsive to initial
treatments as described, requiring and ongoing resuscita-
tion greater than two 20 mL/kg intravenous isotonic fluid bo-
luses, vasopressors, and intensive care management.

Analysis
Analyseswere performed using Python 3.7.319 (Python Soft-

ware Corp, Wilmington, DE). All features first underwent χ2

analysis to determine their independent association with the out-
come of interest (Fig. 2). Candidate models representing popular
machine learning approaches were then constructed using features
as listed previously (N = 76). These models included Gaussian na-
ive Bayes, support vector machines (SVM), logistic regression
(LR), classification and regression trees (CART), and random forest
classifiers (RF). We followed common machine learning practices,
splitting the available data into nonoverlapping 80%/20% training/
testing subsets. Within the 80% training portion, we performed
cross-validation to fit model parameters and tune hyperparameters.
Given significant outcome class imbalance, the synthetic minority
oversampling technique was applied to the data. Final model evalu-
ation was then performed on the withheld test set.

We evaluated each model's ability to correctly identify patients
who developed sepsis or critical sepsis/septic shock during their ED
visit or inpatient hospitalization using the following performance
metrics: recall (sensitivity), specificity, precision (positive predictive
value), the area under the receiver operating curve, and F-1 scores
(the harmonic mean of precision and recall) (Table 1). To account
for the significant outcome class imbalance, we also reported the area
under the precision-recall curve (AU-PRC). The trainable model pa-
rameters were adjusted via backpropagation of class-balanced cross-
entropy loss. Model hyperparameters were tuned to optimize for sen-
sitivity using the scikit-learn software library (Appendix D, http://
links.lww.com/PEC/B54).19,20 Those features determined to be du-
plicative, or a direct proxy of patient disposition, were removed to
reduce collinearity.

We extracted the top quartile of features (N = 20) contributing to
the best models' performance based on the “importance coefficient
value” (IC) assigned to each feature (see Appendix E for definition,
http://links.lww.com/PEC/B54). This coefficient value reflects how
much the model depended on each individual feature to distinguish
between septic and nonseptic patients.

Stratified analyses were then performed by age, primary lan-
guage, assigned sex, race, ethnicity, oncologic history, and insur-
ance type to evaluate for confounding between identified sepsis
www.pec-online.com 3
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TABLE 1. Comparison of Machine Learning Model Performance in Classifying Patients With Sepsis

Performance Characteristic
Random
Forest

Classification and
Regression Tree

Logistic
Regression

Support Vector
Maximization

Gaussian
Naïve Bayes

Sensitivity/recall 0.93 0.85 0.76 0.70 0.37
Specificity 0.84 0.70 0.88 0.92 0.94
Precision 0.04 0.02 0.04 0.05 0.04
F-1 score 0.07 0.04 0.08 0.10 0.07
Area under the receiver operating curve 0.81 0.77 0.82 0.81 0.65
AU-PRC 0.48 0.43 0.40 0.37 0.11
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predictors and sociodemographic factors. First, subpopulations
were created according to the categories defined in Table 2. The
best performing model (RF) was trained on each subpopulation,
and the top quartile of features was extracted and qualitatively
compared. For example, the patient population was divided into
TABLE 2. Patient Demographics, by Binary Sepsis Outcome Catego

Characteristic
At Risk for Sepsis or

Infection (N = 34,883) N (%)

Age category (y)
Neonate (0.0–0.1) 685 (2.0)
Infant (0.11–1.0) 7132 (20)
Toddler: (1.1–3.0) 10,643 (31)
Preschool: (3.1–5.0) 4868 (14)
School-age: (5.1–12.0) 8189 (23)
Adolescent: (12.1–18.0) 3366 (9.6)

Assigned sex
Male 18,346 (53)
Female 16,536 (47)
Not reported 1

Race*
White 13,530 (39)
Black 4475 (13)
Asian American 675 (1.9)
Native Hawaiian 33 (<0.1)
American Indian 46 (0.1)
Other 16,089 (46)

Ethnicity*
Hispanic 15,957 (46)
Not Hispanic 18,926 (54)

Health insurance
Public 26,224 (75)
Private 7327 (21)
Unspecified 1332 (3.8)

Oncologic status
Cancer diagnosis 394 (1.1)
No cancer diagnosis 34,489 (99)

Immunization Status*
Up-to-date 29,282 (84)
Not up-to-date 968 (2.8)
Unreported 4633 (13)

*As self-reported by patient or caregiver at time of registration.
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2 categories according to self-reported ethnicity, and the model
was trained separately for patients identifying as Hispanic and
non-Hispanic. We then qualitatively compared top contributing
features for the resulting models to identify changes in patient risk
factors based on membership in a particular subpopulation.
ry (N = 35,074)

Sepsis/Septic Shock
(N = 191) N (%)

Overall
(N = 35,074) N (%)

12 (6.3) 697 (2.0)
20 (10) 7152 (20)
33 (17) 10,676 (30)
25 (13) 4893 (14)
56 (29) 8245 (24)
45 (24) 3411 (9.7)

92 (48) 18,438 (53)
99 (52) 16,635 (47)

0 1

96 (50) 13,777 (39)
18 (9.4) 4493 (13)
5 (2.6) 680 (1.9)
0 33 (<0.1)

2 (0.1) 48 (0.1)
70 (37) 16,159 (46)

68 (36) 16,025 (46)
123 (64) 19,049 (54)

128 (67) 26,352 (75)
61 (32) 7388 (21)
2 (1) 1334 (3.8)

19 (10) 413 (1.2)
172 (90) 34,661 (99)

125 (65) 29,407 (84)
7 (3.7) 975 (2.8)
59 (31) 4692 (13)
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RESULTS

Patient Population
During the 2-year study period, 98,424 patients aged 0 to

18 years sought care in the PED. The final study population in-
cluded 35,074 patient encounters meeting inclusion criteria, with
191 patients meeting critical sepsis/septic shock criteria (Fig. 1).
Most (67%) patients were aged younger than 5 years (Table 2). Sep-
sis cases (those meeting criteria for sepsis or critical sepsis/septic
shock) occurred in 0.54% of the study population. The prevalence
of sepsis was increased among adolescents (aged 12–18 years,
1.3%) compared with the school-aged (aged 5–11 years, 0.6%)
and the under-5-year-old age groups (0.38%).

There was an increased prevalence of sepsis/critical sepsis
among those with undocumented immunization status (1.25%) and
not up-to-date immunizations (0.7%), compared with those with
up-to-date childhood vaccinations (0.4%) documented in the ED. Fi-
nally, 1.1% of the population had an oncologic diagnosis, and the
prevalence of sepsis or critical sepsis among this group was 4.6%
compared with 0.4% among those without cancer.

Descriptive Analysis (χ2)
The χ2 analysis was performed to identify those patient fea-

tures independently associated with a clinical diagnosis of sepsis/
critical sepsis among hospitalized patients admitted through the
ED. We examined the top quartile (N = 20) of associated features
(Fig. 3). In general, patients' preexisting health conditions—as de-
fined by CCS codes—were independently associated with sepsis/
critical sepsis (Fig. 2), with “MAL”—representing congenital
abnormalities—as the leading condition (Appendix C, http://links.
lww.com/PEC/B54). Emergency department vital sign abnormalities
were also present among the top quartile of features of patients with
sepsis/critical sepsis including tachypnea, tachycardia, as well as fea-
tures reflecting clinical assessment and demonstrating signs of or-
gan dysfunction—eg, altered capillary refill (Fig. 3).

Model Performance
Given the high morbidity and mortality associated with fail-

ure to recognize subtle clinical signs of sepsis, we paid particular
FIGURE 3. Top quartile of patient features independently associated with
the greater the independent association of that variable with an encounte
grouped into ICD-10 CCS categories, which are organized roughly by org

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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attention to model sensitivity, minimizing false-negative classifi-
cation. The RF model performed the best (Fig. 4), followed by
the CART model (Fig. 5). The RF model demonstrated a sensitiv-
ity of 93%, a specificity of 84%, and an F-1 score of 0.07 (ref: 0–1)
(Table 1). The CART model returned a sensitivity of 85%, a spec-
ificity of 70%, and an F-1 score of 0.04 (ref: 0–1). The SVMmodel
generated a higher F-1 score (0.10) but was limited by a low sensitivity
(70%). All models exhibited a high negative predictive value and
a low AU-PRC due to outcome class imbalance.

Identified Patient Risk Factors
Once the top-performing models were identified, we performed

a qualitative analysis of clinical indicators present during the ED stay
and their contribution to each model's ability to predict sepsis/critical
sepsis in admitted patients. We extracted the top quartile of features
(N = 20) from the 2 best-performing models, RF and CART, and re-
viewed each set. Each featurewas assigned an IC, which reflects how
much an individual feature contributed to the model's prediction of
patient outcome. Regardless of treatment, maximum documented
HR was the top contributing feature in both RF and CART models,
with ICs of 0.09 and 0.21, respectively. Both models also ranked
maximum MAP as the second most important contributing feature
(Fig. 4). Finally, minimum systolic BP was a significant contributor
in these models (IC 0.04, 0.06).

Among the measured sociodemographic features, patient age
was identified as one of the top contributing features (IC 0.03) en-
ablingmodel classification of septic patients. The LRwas used to de-
termine the directionality of this feature, revealing increasing age to
be associated with an increased likelihood of a sepsis diagnosis.

Documented immunization status was also identified as a top
feature in the RF (IC 0.02). This factor did not show statistical sig-
nificance in the independentχ2 correlation analysis (Fig. 3) but be-
came a top contributing feature to the RF, LR, and SVM machine
learning models (Fig. 4). Additional key contributing features in-
cluded ED vital sign parameters such as mean, maximum, first,
and last recorded HR, BP, respiratory rate, and oxygenation level.

Finally, patient home zip code was the sixth most significant
feature enabling the CART model to predict sepsis/critical sepsis
patients (IC 0.02, Fig. 5). This model also incorporated multiple
features from the patient problem list.
a sepsis diagnosis on χ2 analysis (N = 35,074). The larger the χ2 value,
r-level diagnosis of sepsis. Documented, baseline problem lists were
an system, including additional categories influencing health status.
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FIGURE 4. Random forest model: top quartile of patient features predicting sepsis (N = 35,074). First indicates first documented in the ED;
last, last documented in the ED.
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Subpopulation Analyses

When stratified by race, the CCS category broadly repre-
sented health care access; FAC (factors influencing health status
and contact with health services) ranked in the top quartile (16th),
with an IC of 0.02 among non-White patients. This problem list
category was not listed among the top contributing features for
White patients.

Among patients with oncology diagnoses, maximum HR re-
mained the top contributing feature, with 2 problem list categories ris-
ing into the top quartile of features: BLD (diseases of the blood and
blood-forming organs and certain disorders involving the immune
mechanism) and GEN (diseases of the genitourinary system).
Among patients without oncologic diagnoses, the top 3 contribut-
ing features included:MAPmeasurements for age, oxygen satura-
tions, and HR.

Patient home zip code was a significant contributing feature
among privately insured patients only (IC 0.03). The CCS code
FIGURE 5. Classification and regression tree model: top quartile of patient
pressure; INF, certain infectious and parasitic diseases; NEO, neoplasms; NV
pulse oximetry; Resp, respiratory rate; SBP, systolic blood pressure; SYM, s
elsewhere classified.
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for social determinants of health—FAC—was also identified as
a top-quartile feature among privately insured patients (IC 0.02).

There were no significant differences in feature importance
when stratified analysis was performed by ethnicity or assigned sex.

DISCUSSION
In this study, we applied machine learning to identify the con-

tribution of vital signs, medical problems, and sociodemographic
factors present during the PED encounter in predicting pediatric
sepsis/critical sepsis diagnosis or treatment during hospitalization
that may be difficult to appreciate using conventional correlation
analysis alone. Top-performing models confirmed well-established
predictors of serious illness such as maximum HR, ongoing HR
(HR_first, HR_last), changes in MAP (MAP_max, MAP_mean),
and systolic BP (SBP_min) during the ED stay. Consistent presence
of these features among allmodels confirms the importance of persis-
tently abnormal vital signs as a predictor of organ dysfunction and
features predicting sepsis (N = 35,074). DBP indicates diastolic blood
S, diseases of nervous system; Oxy, oxygenation level measured by
ymptoms, signs and abnormal clinical and laboratory findings, not

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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therefore a harbinger of sepsis. From a sociodemographic standpoint,
top models also identified immunization status, age, and zip code as
potential risk factors for sepsis. Subpopulation analyses revealed
associations between sepsis/critical sepsis and race, insurance
type, and zip code.

Our study population demonstrated an increased prevalence
of sepsis/critical sepsis among those with undocumented immuni-
zation status (1.25%) or not up-to-date (0.7%) compared with those
with up-to-date childhood vaccinations (0.4%). Although not prom-
inent on tests of independent variable association (Fig. 3), immuni-
zation status remained a top-quartile feature in the best-performing
model (RF) used to identify pediatric sepsis (Fig. 4). Expert review
of the sepsis case in this study raised concern that the identified
association between immunization status and sepsis may be artifi-
cially elevated because of a subpopulation of children who were
unable to be immunized because of comorbidities, such as cancer.
Children undergoing cancer treatment are less likely to be fully
immunized because they cannot receive certain vaccines because
of immunosuppression, and often do not retain immunity to ear-
lier vaccinations.21 Stratified analysis by oncologic diagnosis
demonstrated that immunization status remained a significant fea-
ture only among noncancer patients. These results suggest that a
cancer diagnosis did not artificially inflate the association between
underimmunization and sepsis; in fact, the association between
underimmunization and sepsis becomes negligible in the oncologic
subpopulation. There are many reasonswhy patients may be behind
on immunization: lack of access to care, family belief systems
around immunization or medical care, household education, and
financial or transportation barriers. Furthermore, recent work by
Dunnick et al22 failed to identify an association between
underimmunization and increased risk of bacteremia among chil-
dren aged 2 to 36 months presenting to a PED, as measured by
positive blood cultures. Although invasive bacterial disease is a
common first step in developing sepsis, the presence of immu-
nization status in our top-performing model likely represents a
more complex marker of baseline health status and barriers to
medical care.

Machine learning methods also identified an association be-
tween increasing age and a diagnosis of sepsis. The prevalence of
sepsis was 1.3% among adolescents, as compared with 0.6% in
school-aged children and 0.38% in under-5-year-old age groups
(Table 2). Age was also among the most predictive features in the
RF model (Fig. 4). These data stand in contrast to previous studies
identifying infants as the highest risk age group among study pop-
ulations.23,24 Although this finding needs further investigation, we
postulate that otherwise healthy adolescents are at increased risk
of underrecognition of sepsis due tomultiplemechanisms. First, pa-
tients' developmental status increases their risk of underreporting of
symptoms, whereas increasing autonomy and less frequent contact
with their primary care provider can lead to delays in presentation.
Finally, underrecognition of abnormal vital signs for age by health
care providers. To address concerns that perhaps older children
may have more health issues predisposing them to sepsis, we exam-
ined the relationship between age and patient problem list; descrip-
tive statistics did not demonstrate an association between age and
increasing number of documented health problems.

Although not present in the top model, CART and subpopu-
lation analysis identified zip code as a top-quartile predictor of
sepsis. This finding supports the recent work of Goodwin et al,25

in which the authors identify higher incidence and mortality rates
of severe sepsis among those living in medically underserved
areas. In our study, home zip codewas incorporated as an aggregate
variable; as such, these results highlight the potential significance of
zip codes but do not provide discrete associations between patients'
geographic location and their risk of sepsis. Dedicated evaluation
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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of sepsis outcomes by zip code and census block, in combination
with other sociodemographic factors, would be required to test
this association.

Subpopulation analyses also revealed unexpected associa-
tions between insurance status and a sepsis diagnosis. Publicly
insured patients, who are typically representative of lower so-
cioeconomic status, are historically at greater risk of being
underimmunized, experiencing medical comorbidities, and
experiencing worse outcomes when diagnosed with sep-
sis.3,26,27 Yet, the prevalence of sepsis was higher among pri-
vately insured patients (0.9%) as compared with the publicly
insured patients (0.5%) in our study population. In addition,
unique features such as zip code and the FAC problem list cat-
egory appeared as significant factors only among privately in-
sured patients. These results suggest that privately insured pa-
tients may still experience significant health care barriers based
on their copays, zip code, transportation, and income. A 2007
survey of Oregon residents found that access concerns were
most common among publicly insured families, but “costs
were more often mentioned by families with private insurance.
Families made a clear distinction between insurance and ac-
cess, and having one or both elements did not assure care.”28

A 2016 comparative study of children's access to health care
demonstrated that children with all insurance types experi-
enced challenges in access to specialty care and that privately
insured children, especially those with special needs, reported
significantly greater problems with accessing specialty care,
frustration obtaining health care services, and out-of-pocket
expenses.29 These results suggest a more complex relationship
between classically defined insurance status, social determinants
of health, and sepsis.

As a single-center retrospective observational study, this
investigation has several limitations. First, several pieces of in-
formation were missing from select patient encounters, includ-
ing home medications, updated problem list, and immunization
status. Our study identified only 13,151 patients (37.4%) with
problem list data. This may reflect a combination of most pedi-
atric patients being healthy or incomplete provider documenta-
tion at the time of presentation or hospitalization. We were also
unable to extract home medication lists for this analysis; pa-
tients' medications may have yielded additional insights into
underreported chronic medical conditions or underappreciated
sepsis risk factors.

Our study also identified 4692 patients (13.4%) without doc-
umented immunization information; as such, we were unable to
assess the relationship between vaccination and risk of sepsis in
this population. Rhode Island reports not only a very high rate
of pediatric vaccination—with reports of 91% to 97% complete
vaccination of children aged 0 to 2 years30—but also hosts a sig-
nificant population of newly immigrated individuals who may
have not had the time or resources to achieve complete vaccina-
tion. Prospective study of patients with confirmed vaccination sta-
tus, as well as incorporation of these missing elements, is needed
for further evaluation of this association and could reveal addi-
tional modifiable patient risk factors.

Althoughmachine learning methods account for complex re-
lationships between variables and provide internal cross-validation,
these models are at risk for overfitting because of our small out-
come size. These models are also sensitive to our outcome class
imbalance; as such, we reported the AU-PRC, in addition to the
generally accepted area under the receiver operating curve, to em-
phasize model performance limitations. More generally, machine
learning models are likely to embody, and potentially amplify, any
biases present in the data on which they were trained.31 In partic-
ular, limitations around coding the missing documentation for
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structured nursing assessment tools (eg, altered capillary refill, al-
tered mentation) may have contributed to an underestimation of
these physical examination findings among septic patients. In
addition, study population selection was based in part on the
encounter-level diagnosis, which would only be available in a ret-
rospective study. Any prospective application would require a
study design independent of this criterion. As such, careful con-
sideration of inclusion and exclusion criteria, as well as cohort
construction, is a crucial step in any machine learning study.

With respect to generalizability, predictors identified in a
single-center study such as ours should also undergo external val-
idation through application to a broader range of practice locations
and populations. Once validated, this information could be used to
formulate a more nuanced sepsis screening model for ED providers
evaluating large numbers of children with infectious complaints. In
particular, these models could alert clinicians to sociodemographic
risk factors as well as subtle physiologic state changes during ED
visits that heighten suspicion for sepsis in borderline or even
well-appearing children.

Finally, recent studies evaluating sepsis documentation high-
light inaccuracies in ICD coding as a proxy for actual patient dis-
ease because many codes are dependent on appropriate clinical
and billing interpretation of patient symptoms.6 Furthermore, the
exclusive use of structured data in this study may not have ade-
quately captured the dynamic, complex nature of the patient state.
We attempted to address these limitations through expert review
and classification of each pediatric sepsis case (N = 191) in this
study, although all 35,047 qualifying patient encounters were not hand
reviewed. Further investigation should involve natural-language
processing of clinician documentation, which would enable far
more sophisticated information extraction. Detailed analysis of
the narrative text could yield additional sociodemographic context
and subtle signs of illness progression not captured in structured
medical information.

Despite improvements in detection and treatment, pedi-
atric sepsis remains a life-threatening condition involving a
complex interplay of infection, immunologic, genetic, envi-
ronmental, and sociodemographic risk factors. Given the pro-
portion of sepsis patients who present to an ED for their initial
care, we used machine learning to inclusively examine the re-
lationship between patient characteristics available in the ED
and a sepsis diagnosis. Top-performing models not only con-
firmed well-established predictors of serious illness including
initial and ongoing tachycardia and changes in BP, but also
identified underappreciated relationships between pediatric
sepsis and immunization status, increasing age, and patient
demographics.
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