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Acute stroke care changed dramatically in 2015 with the 
publication of several randomized control trials demon-

strating that endovascular therapy is more effective than al-
teplase alone for large vessel occlusion (LVO) stroke (1–7). 
Furthermore, the endovascular therapy treatment effect 
is profoundly time dependent, and every minute that we 
work faster to achieve vessel recanalization we can provide 
the gift of a week of disability-free life to patients (8). LVO 
stroke is a medical diagnosis that cannot be missed and 
must be made quickly.

One of the commonly used methods to confirm or 
exclude the presence of a LVO quickly is with CT an-
giography, a 3-minute examination that can easily be 
performed following the noncontrast head CT that is 
standard of care for all acute stroke imaging (9–11). 
Multiphase CT angiography is a protocol recently 

introduced for acute stroke imaging that aims to both 
improve LVO detection and improve patient selection 
for endovascular therapy (12–14).

Recent advances in deep learning, a class of machine 
learning, inspired new research on the uses of convolutional 
neural networks to perform at high levels in computer vi-
sion problems (15). These architectures hold great promise 
for enhancing the workflow in radiology. Specifically, in 
the neuroradiology domain, deep learning has been used 
to segment microhemorrhages at MRI with a sensitivity 
greater than 93% (16), to automate identification and to 
segment ischemic brain lesions on diffusion-weighted MRI 
scans (17), to detect early ischemic infarct at noncontrast 
CT with precision similar to diffusion-weighted MRI (18), 
and to detect intracranial hemorrhage at CT by reducing 
the time to diagnosis by 96% (19).
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Background: Large vessel occlusion (LVO) stroke is one of the most time-sensitive diagnoses in medicine and requires emergent 
endovascular therapy to reduce morbidity and mortality. Leveraging recent advances in deep learning may facilitate rapid detection 
and reduce time to treatment.

Purpose: To develop a convolutional neural network to detect LVOs at multiphase CT angiography.

Materials and Methods: This multicenter retrospective study evaluated 540 adults with CT angiography examinations for suspected 
acute ischemic stroke from February 2017 to June 2018. Examinations positive for LVO (n = 270) were confirmed by catheter angi-
ography and LVO-negative examinations (n = 270) were confirmed through review of clinical and radiology reports. Preprocessing 
of the CT angiography examinations included vasculature segmentation and the creation of maximum intensity projection images 
to emphasize the contrast agent–enhanced vasculature. Seven experiments were performed by using combinations of the three 
phases (arterial, phase 1; peak venous, phase 2; and late venous, phase 3) of the CT angiography. Model performance was evaluated 
on the held-out test set. Metrics included area under the receiver operating characteristic curve (AUC), sensitivity, and specificity.

Results: The test set included 62 patients (mean age, 69.5 years; 48% women). Single-phase CT angiography achieved an AUC of 
0.74 (95% confidence interval [CI]: 0.63, 0.85) with sensitivity of 77% (24 of 31; 95% CI: 59%, 89%) and specificity of 71% (22 
of 31; 95% CI: 53%, 84%). Phases 1, 2, and 3 together achieved an AUC of 0.89 (95% CI: 0.81, 0.96), sensitivity of 100% (31 of 
31; 95% CI: 99%, 100%), and specificity of 77% (24 of 31; 95% CI: 59%, 89%), a statistically significant improvement relative 
to single-phase CT angiography (P = .01). Likewise, phases 1 and 3 and phases 2 and 3 also demonstrated improved fit relative to 
single phase (P = .03).

Conclusion: This deep learning model was able to detect the presence of large vessel occlusion and its diagnostic performance was 
enhanced by using delayed phases at multiphase CT angiography examinations.
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three local hospitals as the population positive for LVO. To create 
an equal balance of cases for model training, 270 of 686 patients 
were randomly selected from the cohort negative for LVO. The 
only exclusion criteria for patients negative for LVO other than 
the presence of LVO was age younger than 18 years. Otherwise, 
the patients negative for LVO contained a variety of non-LVO 
pathology such as hemodynamically and nonhemodynamically 
significant atherosclerotic stenoses of the cervical and intracranial 
vasculature and acute ischemic and hemorrhagic infarcts. Inclu-
sion of these pathologies helped to augment the generalizability of 
our model. See Table 1 for demographic data.

Annotation
Patients who were positive for LVO and negative for LVO were 
confirmed by reviewing the radiology reports (by board-certified 
radiologists) and LVO-positive cases were further compared with 
the subsequent cerebral angiographic reports (by neurointerven-
tional radiologists) found in the medical records available on our 
hospital information system (Epic, Verona, Wis).

For the purposes of this study, LVO included both anterior 
and posterior circulation occlusions. An anterior LVO involved 
the cervical internal carotid artery (ICA), intracranial ICA (from 
the petrous segment to the bifurcation), middle cerebral artery 
including the M1 and M2 portions, and tandem occlusions (ICA 
and middle cerebral artery). The M1–middle cerebral artery was 
defined as the portion of the middle cerebral artery extending 
from the ICA bifurcation to the bifurcation/trifurcation and the 
M2–middle cerebral artery was defined as branches distal to this 
that were oriented within the Sylvian fissure. A posterior LVO 
included basilar and intracranial vertebral artery occlusions.

Data Split
The total data set included 540 multiphase CT angiography 
examinations with an 80%/10%/10% split for training/valida-
tion/test (424, 54, and 62 examinations, respectively) (Fig 1). 
The patients in the test set were held out and not included in 
training or validation to ensure generalizability for unseen data. 
Each split contained a randomly selected split of LVO-posi-
tive versus LVO-negative cases. For the LVO-negative cases, 
we used the undersampling technique to alleviate the class 
imbalance problem common to real-world machine learning 
problems (20). LVO-positive cases were randomly balanced be-
tween right-sided occlusions versus LVOs. Because of the rela-
tively small number of posterior circulation occlusions, they 
were separately and randomly split with an 80%/10%/10% 
(training/validation/test) distribution.

Multiphase CT Angiography
Multiphase CT angiography is a validated tool used to triage 
patients suspected of having acute ischemic stroke (12,13). The 
CT angiography examinations in our study were performed 
with multiple different CT scanners across three different hos-
pitals; therefore, exact scanning parameters differed slightly 
across patients. Generally, a standard noncontrast CT image of 
the brain was first acquired, followed by the first CT angiogra-
phy phase, P1, which was acquired from the aortic arch to vertex 
during peak arterial phase. The following two phases, P2 and 

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = 
confidence interval, ICA = internal carotid artery, LVO = large vessel 
occlusion

Summary
A deep learning model was developed to accurately detect large vessel 
occlusions at multiphase CT angiography imaging examinations.

Key Results
 n A convolutional neural network trained to detect large vessel oc-

clusions (LVOs) at multiphase CT angiography achieved an area 
under the curve of 0.89 and a sensitivity of 100% (31 of 31).

 n The combinations of first and third phases, second and third 
phases, and all phases of the multiphase CT angiography resulted 
in higher detection of LVO relative to single phase.

Given the success of deep learning applications in other brain 
pathology, this study aimed to evaluate the feasibility of the use 
of convolutional neural networks to detect acute LVOs at CT 
angiography. It is hypothesized that a convolutional neural net-
work can achieve a minimum area under the receiver operat-
ing characteristic curve (AUC) value of 0.70 relative to chance 
(0.50) by using CT angiography single-phase (arterial) imaging 
alone in detecting LVO. In addition, it is also hypothesized that, 
relative to single-phase CT angiography, the use of additional 
CT angiography phases (ie, venous and late venous phases) will 
improve diagnostic performance as defined by AUC.

Materials and Methods

Data Set Collection
Our institutional review board approved this multicenter ret-
rospective Health Insurance Portability and Accountability 
Act–compliant study and waived the requirement for written 
informed consent.

CT angiographic images were extracted from the picture ar-
chiving and communication system at our institution from 311 
unique consecutive patients with LVO from February 2017 to 
June 2018. Among those, 270 patients were found to contain 
complete multiphase CT angiography data. CT angiographic 
examinations were performed at three hospitals with a variety 
of scanners and scanning techniques. All of the patients with 
LVO at multiphase CT angiography were confirmed at cerebral 
angiography within our tertiary referral hospital’s neurointerven-
tional department. There was no exclusion of patients positive 
for LVO who had additional reported pathology such as stenoses 
of nonoccluded brain and neck vasculature.

Consecutive patients without LVO were found through a query 
of our institution’s radiology information system specifying the 
CT angiography brain and neck IMG code for CT angiography 
ELVO (Montage; Nuance Communications, Burlington, Mass). 
The CT angiography emergent LVO code is reserved for patients 
in which a so-called code stroke was clinically initiated because 
of symptoms that were concerning for acute ischemic stroke. The 
search included the same dates (February 2017 to June 2018) as 
LVO-positive studies. A total of 686 unique patients negative for 
LVO with multiphase CT angiography were found from the same 
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the DenseNet-121 (26) architecture as it produced the highest 
preliminary accuracies. Models were initiated with pretrained 
weights from ImageNet (15). All models were built by using 
the Keras toolkit in Python (http://keras.io). The learning rate 
was .00001 and the number of epochs until convergence was 
10 with batch sizes of three. The output was a binary classi-
fier with two output classes, LVO negative and LVO positive. 
All experiments were performed on a 64-bit Linux operating 
system (Debian 9) with 12-core central processing unit with 
256-GB random-access memory, or RAM, and four graph-
ics processing units (GTX 1080ti; Nvidia, Santa Clara, Calif; 
3584 CUDA [compute unified device architecture] cores and 
11 GB of GDDR5 [graphic double date rate type five synchro-
nous dynamic random-access memory]).

A total of seven combinations of convolutional neural net-
work model experiments were created by training on different 
subsets and permutations of the multiphase CT angiography 
data, including each phase alone (P1, P2, P3) and in various 
combinations (P1 and P2, P1 and P3, P2 and P3, and P1 and 
P2 and P3).

To help view the model’s class discrimination, we used the 
gradient-weighted class activation mapping (Grad-CAM) 
approach to generate a localization map of the most important 
regions in an image (27). Examples of these gradient-weighted 
class activation mapping approaches are demonstrated in Figures 
3 and 4. The source code used for modeling can be found on-
line (https://github.com/brown-ELVO/ELVO-dectection/commit/
ae68261b92191d233a9fa9a92418aaa0cd912b74).

P3, were acquired from the skull base to vertex 
with peak venous timing (at P2) and late venous 
timing (at P3). Standard CT angiography proto-
col included a 0.625–1-mm slice thickness image 
acquisition reconstructed as maximum intensity 
projections at 24-mm slice thickness with 4 mm 
of spacing. We used a total of 80 mL of contrast 
agent (Omnipaque; Mallinckrodt, St Louis, Mo), 
injected at a rate of 4 mL per second.

Data Preprocessing and Vascular Segmentation
Each multiphase CT angiography examination 
underwent a series of preprocessing steps before 
it was used as input to the convolutional neural 
network models by using Python (version 3.6; 
Python Software Foundation, Wilmington, Del). 
Each CT angiography examination was converted 
from Digital Imaging and Communications in 
Medicine format to a NumPy array (https://numpy.
org) and isotropic resampling was performed to 
standardize each voxel into a volume of 1 mm3. 
Each axial CT slice was resized to 500 3 500 pix-
els, converted to gray scale, and normalized to val-
ues between 0 and 1.

Given the relatively small size of our data set 
for a deep learning application, we increased 
the signal-to-noise ratio by adapting a heuristic 
retinal vascular segmentation algorithm (21) to 
segment the intracranial vasculature system (ie, 
signal) from the underlying nonvasculature structure such as 
the brain parenchyma and skull (ie, noise). We did not have 
to significantly alter the approach adapted from retinal ves-
sel segmentation to our data. The only major exception to 
the retinal vessel heuristic workflow was not requiring retinal 
fundus extraction by using red, blue, and green values. Oth-
erwise, the backbone iterative process of edge detection was 
similar, whereby a central pixel intensity was compared with 
its surrounding pixel neighborhood. If the pixel intensity was 
greater than 50% of the surrounding pixels, then that pixel 
was assumed to belong to a blood vessel. Additional process-
ing with connected components, thresholding and Sobel 
filtering was performed. Overall, this segmentation process 
took approximately 40 seconds per CT angiography scan.

We created an algorithm to select the 40 most-cranial axial 
images of each multiphase CT angiography examination, ex-
tending from the skull vertex through to the circle of Wil-
lis, to include all the relevant intracranial vasculature. A final 
preprocessing step included producing a maximal intensity 
projection along the axial plane of these 40 slices, resulting in 
a final two-dimensional maximum intensity projection image 
to be used in model training. This segmentation process was 
performed for each of the three multiphase CT angiography 
series, P1, P2, and P3 (Fig 2).

Model Training and Testing
After testing a variety of other models including Xception, 
ResNet-50, VGG16, and InceptionV3 (22–25), we adapted 

Table 1: Demographics

Parameter
Training Cohort  
(n = 424)

Validation Cohort  
(n = 54)

Test Cohort  
(n = 62)

Negative for LVO 212 27 31
 Mean age (y) 70.8 6 12.9 74.4 6 13.2 69.4 6 14.5
 Women 122 (57.5) 16 (59.3) 15 (48.4)
Positive for LVO 212 27 31
 Mean age (y) 74.2 6 14.4 77.2 6 13.7 69.6 6 14.0
 Women 117 (55.2) 14 (51.9) 15 (48.4)
Anterior circulation 203 (95.8) 24 (88.9) 27 (87.1)
 Right ICA 14 (6.9) 2 (8.3) 4 (14.8)
 Right M1 49 (24.1) 7 (29.2) 7 (25.9)
 Right M2 13 (6.4) 3 (12.5) 2 (7.4)
 Right ICA and MCA 18 (8.9) 0 2 (7.4)
 Left ICA 12 (5.9) 0 1 (3.7)
 Left M1 48 (23.6) 5 (20.8) 6 (22.2)
 Left M2 32 (15.8) 4 (16.7) 5 (18.5)
 Left ICA and MCA 17 (8.4) 0 2 (7.4)
Posterior circulation 9 (4.2) 3 (11.1) 2 (6.5)
 Basilar 5 (55.6) 1 (33.3) 2 (100)
 Vertebral 4 (44.4) 2 (66.7) 0

Note.—Data in parentheses are percentages. Mean age is 6 standard devia-
tion. M1 indicates the M1 branch of the middle cerebral artery (MCA); M2 
indicates the M2 branch of the MCA; left internal carotid artery (ICA) and 
MCA indicates tandem occlusion involving the ICA and either M1 or M2; 
and posterior circulation indicates the basilar or vertebral artery. LVO = large 
vessel occlusion.
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Figure 1: Flowchart demonstrates data collection and split. Consecutive multiphase CT angiography examinations in patients with and without large 
vessel occlusion (LVO) were collected. LVO-positive (pos) patients were excluded if there was an incomplete multiphase CT angiography study. 
The LVO-negative (neg) patients were balanced to the positive cases and were age and sex matched. The final data split corresponded to 80%, 10%, 
and 10% (training, validation [val], and test, respectively) with each split containing an equal number of patients positive and negative for LVO.

Statistical Analysis
Diagnostic performance was evaluated on the validation and 
test sets by using statistical software (SAS, version 9.4; SAS, 
Cary, NC). Sensitivity, specificity, and AUC were compared 
and estimated for each phase combination by using the LO-
GISTIC procedure. Comparisons between AUCs were assessed 
by using the DeLong method assuming correlation in observa-
tions. Model fit was evaluated by using the Hosmer-Lemeshow 
goodness-of-fit test. Youden index was used to identify the op-
timal cutoffs for sensitivity and specificity in the validation set. 
These cutoffs were then used to evaluate the test set. AUCs 
without cutoffs were also examined for both the validation 
and test sets. The test set was powered equally for sensitivity 
and specificity (50 and 50). Assuming a minimum AUC of 
0.70 (compared with 0.50) and a type I error rate of 0.05, a 
test set of 31 cases and 31 control patients were required to 
achieve power at 80%. Power analysis was performed by using 
R version 3.6.1 and the pROC package version 1.15.3 (in R; 
https://www.r-project.org). The test set was completely held out 
and never modified. Statistical significance was set at .05 and 
confidence intervals (CIs) were calculated at 95%. Statistical 
analyses were conducted by the statistical author (G.L.B., with 
8 years of experience).

Results
Detailed demographics for our training, validation, and test 
sets are shown in Table 1. Among the total 540 unique pa-
tients who underwent a multiphase CT angiography examina-
tion, 270 were negative for LVO (153 women and 117 men) 
and 270 were positive for LVO (146 women and 124 men). 
Average age and standard deviation for patients negative for 
LVO and positive for LVO were 71 years 6 15 (standard de-
viation) and 74 years 6 14, respectively. The held-out test set 
contained 29 anterior circulation occlusions (four right ICA, 

one left ICA, seven right M1, six left M1, two right M2, five 
left M2, two right tandem, two left tandem) and two posterior 
circulation occlusions (two basilar artery).

As indicated in Table 2 (ie, test set), all models performed 
above an AUC of 0.70. Phase 1 alone achieved an AUC of 0.74 
(95% CI: 0.63, 0.85) with sensitivity of 24 of 31 (77%; 95% 
CI: 59%, 89%) and specificity of 22 of 31 (71%; 95% CI: 
53%, 84%) (P , .01; relative to AUC of 0.5). When all phases 
were used (1, 2, and 3), the AUC increased to 0.89 (95% CI: 
0.81, 0.96), with sensitivity of 31 of 31 (100%; 95% CI: 99%, 
100%) and specificity of 24 of 31 (77%; 95% CI: 59%, 89%), 
a statistically significant improvement relative to single phase 
CT angiography (P = .01). When using phase 1 and 3 and 2 
and 3, the AUCs achieved a value of 0.85 (95% CI: 0.77, 0.94) 
with sensitivity of 31 of 31 (100%) and specificity of 22 of 31 
(71%; 95% CI: 53%, 84%) and with sensitivity of 26 of 31 
(84%; 95% CI: 66%, 93%) and specificity of 27 of 31 (87%; 
95% CI: 70%, 95%), respectively (both P = .03). When all 
other combinations of phases were used, AUC was higher than 
when single phase alone was used, but these differences failed 
to be statistically significant.

To be thorough, we also included the results from our vali-
dation set. The diagnostic performance results for the test set 
largely confirm the diagnostic performance of the validation 
set, with one exception: when phase 2 and 3 was used, the 
AUC achieved a value of 0.81 (95% CI: 0.71, 0.92) with sen-
sitivity of 23 of 27 (85%; 95% CI: 66%, 94%) and specificity 
of 22 of 27 (81%; 95% CI: 62%, 92%); this increase failed to 
be statistically significant (P = .20).

In addition, the convolutional neural network was refined 
by using the validation set. Thus, the convolutional neural net-
work’s performance on the test set after being refined by using 
the validation set can be evaluated with the AUC as a function 
without optimal cutoff points; these overall AUCs without 
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Discussion

We developed a deep learning model that can classify large ves-
sel occlusions (LVO) on CT angiography images with a high 
diagnostic performance, achieving an area under the receiver 
operating characteristic curve (AUC) of 0.89 by using the 
combination of phases 1, 2, and 3. Our model was discrimi-
native across patient demographics, multiple institutions, and 
scanners and detected both anterior and posterior circulation 
occlusions, indicating it could function as a tool to prioritize 
the review of patients with potential LVO by radiologists and 
clinicians in the emergency setting. We also established that 
a model using single-phase CT angiography could achieve an 
AUC of at least 0.70 whereas models using phases 1 and 3, 
phases 2 and 3, and phases 1, 2, and 3 could achieve a signifi-
cant improvement in AUC compared with single phase.

optimal cutoffs are provided in Table E1 (online) along with 
Youden values and Hosmer-Lemeshow P values.

Given the results of the test set, the use of phases 1 and 
3 achieved a significant increase in diagnostic performance 
relative to using phase 1 alone. The relationship between the 
prediction of phases 1 and 3 and actual presence of LVO is 
illustrated in Figure 5. As can be seen in Figure 5, there is a 
single value that the model predicted to be 100% positive for 
LVO (lower right-hand corner), although this case had been 
deemed an actual negative finding. This single false-positive 
finding was investigated further, revealing no evidence of 
LVO on the CT angiography image. However, the patient’s 
subsequent MRI, performed 6 hours later, showed a small 
acute ischemic infarct in the left paramedian pons (Fig 6). 
A sample case demonstrating multiphase maximum intensity 
projection CT angiography images is shown in Figure 3.

Figure 2: Flowchart demonstrates data preprocessing and experimental setup. The three phases (P1, P2, and P3) of the multiphase examina-
tion each underwent a preprocessing pipeline that included vasculature segmentation. Because the relevant information was contained in the 
downstream intracranial vasculature, we selected the 40 most-cranial axial slices from the circle of Willis to the skull vertex. These 40 axial slices 
were then converted into a single axial two-dimensional (2-d) maximum intensity projection (MIP) image as the input to our convolutional neural 
network (CNN). A total of seven experimental combinations were performed and each model was evaluated on the held-out test set.
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Figure 4: Images show four separate patients with large vessel occlusions correctly predicted by the algorithm. The top row shows a representative CT slice from the 
delayed venous phase CT angiography. The middle row shows the preprocessed maximum intensity projection images that function as the input to the model. The bottom 
row are overlaid heat maps, with areas in red showing the most discriminative regions. Notice these so-called hot regions correlate with the occlusion location (respectively: 
left [L] M2, L M1, right [R] M2, basilar) in each patient.

Figure 3: Axial maximum intensity projection images and a heat map in a 60-year old man who presented to the emergency department with new onset left-sided 
weakness. A, Arterial (phase 1) image shows an abrupt occlusion of the distal M1 branch of the right middle cerebral artery (arrow) with paucity of distal vasculature. B, 
Venous (phase 2) image shows subtle asymmetry with minimal increased vascularity in the contralateral left hemisphere. C, Late venous (phase 3) image shows prominent 
increased opacification of the ipsilateral right hemispheric vasculature downstream from the occlusion. D, Heat map shows the most discriminative region (red) that the 
model used for the correct prediction.
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vascular opacification of vessels distal to an occlusion (ie, the 
delayed vessel sign [34]), rather than the absence or dimin-
ished opacification at the initial arterial phase. Our study 
found when additional delayed phases were combined with 
phase 1 (ie, phases 1 and 3 and phases 1, 2, and 3), there was 
an additive effect resulting in better model performance over 
single-phase CT angiography indicating that both initial ab-
sence of opacification and delayed enhancement are important. 
Additionally, the phenomenon of downstream asymmetrically 

Whereas there are several U.S. Food and Drug Adminis-
tration–approved commercial platforms that use deep learning 
solutions for automated LVO stroke detection (ie, rapid CT 
angiography [https://www.rapidai.com] and Viz.ai [https://www.
viz.ai), to our knowledge, this is the first study to use a convo-
lutional neural network to identify LVO by using multiphase 
CT angiography images. Published results evaluating these 
commercial platforms that used single-phase CT angiography 
examinations demonstrated an overall AUC, sensitivity, and 
specificity of 0.86, 0.92, and 0.81, respectively, for the rapid 
CT angiography algorithm (28) and sensitivity of 0.82 and 
specificity of 0.94 for the Viz.ai algorithm (29). However, our 
study achieved an overall AUC of 0.97 without cutoffs, sen-
sitivity of 1.00, and specificity of 0.77. Additionally, we used 
multiphase CT angiography images and included posterior 
circulation and extracranial (cervical) ICA occlusions, whereas 
the aforementioned studies included only intracranial anterior 
circulation LVOs and single-phase CT angiography images. In-
cluding posterior circulation occlusions is essential to any LVO 
detector because nearly 20% of ischemic strokes occur in the 
vertebrobasilar vascular distribution. Furthermore, accurate 
detection of basilar artery occlusions is paramount given the 
high morbidity and mortality (30,31).

Because our data set included multiphase CT angiography 
images, we were able to investigate the role of delayed CT angi-
ography in our model’s performance with three separate time-
resolved data points. Multiphase CT angiography has been 
shown to clearly and accurately depict LVO while providing 
a more nuanced assessment of the intracranial pial collateral 
network of both the normal hemisphere and the hemisphere 
with LVO (12,32), with collateral vessels becoming progres-
sively apparent from early to delayed phases (33). This suggests 
that the best-performing models relied more on asymmetric 

Figure 5: Graph shows artificial intelligence (AI) large vessel occlusion (LVO) 
prediction score versus presence or absence of LVO for the combination of phase 
1 and 3 (arterial and late venous phase). Y-axis represents the binary ground truth 
of presence or absence of LVO. The x-axis shows the probability range (from 0 
to 1.0) of the model predicting the presence of LVO. The solid black line repre-
sents the relationship between the likelihood of presence or absence of LVO and 
prediction score (slope), while the light blue band represents the 95% confidence 
band of the slope. The red line corresponds to the Youden J cutoff value. The 
circles represent observed data points. ELVO = emergent LVO.

Table 2: Sensitivity, Specificity, and Area Under the Curve between Validation and Test Sets with Cutoffs by Phase Combination

Parameter

Validation Test by Using Cutoffs Test Set by Using Validation Cutoffs

Sensitivity Specificity AUC 

P Value  
(reference, 
phase 1) Sensitivity Specificity AUC 

P Value 
(reference, 
phase 1)

Phase 1 18/27 (67)  
[47, 82]

23/27 (85)  
[66, 94]

0.76 [0.65, 0.87] 24/31 (77)  
[59, 89]

22/31 (71)  
[53, 84]

0.74 [0.63, 0.85]

Phase 2 23/27 (85)  
[66, 94]

24/27 (89)  
[70, 96]

0.87 [0.78, 0.96] .051 24/31 (77)  
[59, 89]

29/31 (94)  
[77, 98]

0.85 [0.77, 0.94] .06

Phase 3 25/27 (93)  
[74, 98]

17/27 (62)  
[43, 79]

0.78 [0.67, 0.88] .40 30/31 (96)  
[80, 100]

16/31 (54)  
[37, 71]

0.77 [0.67, 0.87] .33

Phase 1 and 2 25/27 (93)  
[74, 98]

19/27 (70)  
[50, 85]

0.81 [0.71, 0.92] .22 30/31 (97)  
[80, 100]

21/31 (68)  
[49, 82]

0.82 [0.73, 0.91] .12

Phase 1 and 3 25/27 (93)  
[74, 98]

23/27 (85)  
[66, 94]

0.89 [0.80, 0.97] .01 31/31 (100) 
 [0, 100]

22/31 (71)  
[53, 84]

0.85 [0.77, 0.94] .03

Phase 2 and 3 23/27 (85)  
[66, 94]

22/27 (81)  
[62, 92]

0.81 [0.71, 0.92] .20 26/31 (84)  
[66, 93]

27/31 (87)  
[70, 95]

0.85 [0.77, 0.94] .03

Phase 1, 2, and 3 26/27 (96) 
 [77, 100]

22/27 (81)  
[62, 92]

0.89 [0.81, 0.97 .01 31/31 (100)  
[0, 100]

24/31 (77)  
[59, 89]

0.89 [0.81, 0.96] ,.01

Note.—Sensitivity and specificity data are numerator/denominator. Data in parentheses are percentages; data in brackets are the 95% 
confidence interval of the percentage. Phase 1 indicates arterial, phase 2 is peak venous, and phase 3 is late venous. See Table E1 (online) for 
model fitting and cutoff values. AUC = area under the receiver operating characteristic curve. 
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augment its human counterpart by offering a so-called con-
sult for difficult cases. Additionally, cases with positive findings 
could immediately get flagged, leading to faster mobilization of 
teams for endovascular therapy.

The strengths of our study include a varied patient popula-
tion from multiple hospitals and CT scanners with variations in 
technical parameters (37). Also, additional head and neck vas-
culature pathology was not excluded in either the LVO-positive 
or LVO-negative cohorts. This heterogeneity suggests the results 
could be applied generally in the clinical setting. Additionally, 
our ground truth for the presence of LVO comes from subse-
quent diagnostic cerebral angiographic confirmation performed 
by fellowship-trained neurointerventional radiologists. Finally, 
our model incorporates both anterior and posterior circulation 
occlusions, making this a robust tool for detecting all subtypes of 
potential LVOs eligible for mechanical thrombectomy.

Our study had several limitations. Our cohort of positive 
cases was relatively small for deep learning, which limits the 
subset analysis of a particular class of occlusion (ie, M1, M2, 
and ICA). Thus, we were only able to analyze whether an LVO 
was present or not within a given patient. Further studies with 
more examples of each occlusion location are needed to obtain 
a more granular picture of how well the model performs for 
given occlusion locations. Second, we optimized our model 
with as many examples of LVO-positive findings as possible 
while matching with an equal number of examples of LVO-
negative findings regarding age and sex. This was done to maxi-
mize sensitivity and specificity because our data set consisted 
of an artificially high LVO prevalence. Therefore, we were un-
able to estimate accurate positive or negative predictive values. 
However, because real-world LVO prevalence is much lower 
than 50%, our already high negative predictive value (due to 
high sensitivity) would remain at or near 100% in real-world 
settings, which is arguably the more important feature. Addi-
tionally, this was a retrospective study with data obtained from 
three local hospitals. A prospective evaluation of our model 
with an external geographically more diverse patient popula-
tion would ensure reproducibility and increase generalizabil-
ity. Third, our model only provided a probability score for the 

increased opacification may explain why our model was able 
to detect the presence of occlusions located out of the field 
of view (ie, cervical ICA and vertebrobasilar occlusions) be-
cause the z-axis provided to the model spanned only from 
the circle of Willis to the skull vertex. However, the observed 
improvements in model performance when using additional 
phases where limited to comparisons with phase 1 alone only; 
therefore, these improvements can only be interpreted relative 
to single-phase CT angiography. Nonetheless, the statistically 
significant improvements all demonstrated an increase in AUC 
higher than 0.05 (between 0.11 and 0.15), a commonly ac-
cepted goal. Without further investigation, it should not be 
assumed that an individual phase (ie, the lowest performing 
phase 2) is detrimental to model performance.

Interestingly, the one incorrectly predicted outlier in our 
test set was a true-negative LVO, with our classifier predicting 
it to be positive for LVO with a near 100% probability score. 
Whereas there was no evidence of LVO at CT angiography, the 
patient’s subsequent MRI approximately 6 hours later showed 
a small acute ischemic infarct in the left paramedian pons (Fig 
6), raising the possibility that our model does not discriminate 
between the arbitrary categorization of large and small vessel 
occlusions and may be able to detect smaller vasculature in-
farcts that human radiologists might not be able to view at 
CT angiography. This ability of computer vision pipelines to 
extract new knowledge from medical image data not previously 
thought to be quantifiable has been documented in other stud-
ies, for example, predicting patient sex and age from retinal 
images (35). Further study would be needed to develop this 
potential application.

The ultimate test of any machine learning application in 
radiology is its ability to provide clinical value. Whereas our 
machine algorithm demonstrates a high performance in de-
tecting LVO, so do radiologists. It had been shown that the 
diagnostic performance in detecting LVO at CT angiography 
is high across all levels of radiologist expertise (sensitivity and 
specificity both .0.94), with expertise ranging from radiology 
residents to fellowship-trained neuroradiologists (36). How-
ever, an algorithm that can detect LVO with high fidelity could 

Figure 6:  Images show false-positive finding prediction in a 52-year-old man who presented with acute stroke symptoms to the emergency department. A, Axial arte-
rial phase CT angiography and, B, axial venous phase CT angiography images show no evidence of a large vessel occlusion. Additional noncontrast-enhanced brain CT 
images (not shown) did not show evidence of acute infarct. C, Diffusion-weighted MRI performed 6 hours after presentation shows an area of restricted diffusion consistent 
with an acute infarct in the left paramedian pons (arrow).  D, Heat map overlay shows focal activity projecting over the central brain.
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global presence or absence of an LVO and does not segment 
or identify the location of LVO, which would be helpful for a 
radiologist who uses this in a clinical setting. In addition, our 
model was only able to perform the single task of detecting 
LVO on CT angiography images. Additional classifiers would 
have to be added to detect alternative acute intracranial pathol-
ogy (such as intracranial hemorrhage or aneurysm) if this tech-
nology were to be used as a comprehensive triage tool in the 
emergency setting because acute ischemic stroke–like symp-
toms can be a manifestation of alternative pathology. Evalu-
ation of diagnostic performance was limited to sensitivity and 
specificity because our prevalence was artificial (ie, we powered 
for sensitivity and specificity equally given the small true pop-
ulation prevalence of positives); thus, we could not evaluate 
positive and negative predictive value. A prospective evalua-
tion of our model in the emergency setting is the next step to 
evaluate its clinical utility. Finally, there was no overt evidence 
of model overfitting, a common problem in machine learning, 
because the performance of the test set matched closely with 
the validation set. The observation of a drop in AUC within 
the validation with phase 2 (compared with combinations of 
phase 1 and 2 and phase 2 and 3) likely reflected a performance 
variation with additional added data (ie, phases) providing the 
very high dimensional input feature space of our model.

In conclusion, we successfully developed a deep learning 
convolutional neural network to detect large vessel occlusion at 
multiphase CT angiography with a high area under the receiver 
operating characteristic curve, particularly when using delayed 
phases. Our work is an important first step in incorporating deep 
learning to triage large vessel occlusions (LVOs) in the emer-
gency setting and has the potential to shorten the time to LVO 
detection with ultimate improvements in patient outcomes.
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