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ABSTRACT
Many generative language and relevance models assume con-
ditional independence between the likelihood of observing
individual terms. This assumption is obviously näıve, but
also hard to replace or relax. There are only very few term
pairs that actually show significant conditional dependencies
while the vast majority of co-located terms has no implica-
tions on the document’s topical nature or relevance towards
a given topic. It is exactly this situation that we capture
in a formal framework: A limited number of meaningful de-
pendencies in a system of largely independent observations.
Making use of the formal copula framework, we describe
the strength of causal dependency in terms of a number of
established term co-occurrence metrics. Our experiments
based on the well known ClueWeb’12 corpus and TREC
2013 topics indicate significant performance gains in terms
of retrieval performance when we formally account for the
dependency structure underlying pieces of natural language
text.

Categories and Subject Descriptors
Information Systems [Information Retrieval]: Retrieval
models

Keywords
Relevance models; Multivariate relevance; Ranking; Proba-
bilistic framework; Language models.

1. INTRODUCTION & RELATED WORK
Generative n-gram language models are frequently used

tools for representing document or collection vocabulary in
the form of probability distributions over (spans of) textual
tokens. They are popular for a wide array of tasks, includ-
ing sentiment analysis, machine translation, content based
classification and document retrieval. Most state-of-the-art
models assume individual terms to be independently drawn
from the underlying distribution. While this independence
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assumption greatly simplifies the computation of conditional
probabilities, it is also rather näıve. It is easy to find ex-
amples of proper names such as “Barack Obama” or “Hong
Kong”, but also other fixed expressions (“tax evasion”) as
well as non-consecutive constructs (“dollar” , “stock”), that
should benefit from an explicit model of term interdepen-
dency. It is easy to see that some of these examples go be-
yond the capabilities of mere higher-order language models.
In the past, there have been a number of attempts to for-
mally integrate term dependency structures into generative
models.

Van Rijsbergen’s early work on dependency trees [19] the-
oretically establishes the use of maximum spanning trees and
term co-occurrence statistics in order to establish local term
dependency structures. Yu et al. [20] present a comparison
of tree and cluster-based methods for dependency modelling
in information retrieval. Srikanth and Srihari [18] inves-
tigate dependency-aware relevance models by using higher
order n-gram models and comparing to the unigram setting.
They report consistent improvements for the dependency
models. Croft et al. [7] propose the use of inference net-
works trained on the basis of term proximity information
to model the relevance of entire phrases. In a related ef-
fort, Lossee [12] confirms the important role of proximity
in dependency modelling. The author reports optimal per-
formance using context windows of 3-5 terms surrounding
each candidate term. In a comparison study of multiple de-
pendency models, Bruza and Song [4] achieve best results
using a matrix representation of co-occurrence contexts to
describe terms. Gao et al. [11] explicitly decouple the de-
pendency structure of a sentence from the concrete term
generation probabilities in the form of linkages.

Nallapati and Allan [14] relax the independence assump-
tion by modelling documents as groups of (still independent)
sentences. Within each sentence, however, they condition
the probability of observing a term on all previous terms in
the same sentence. Their sentence model is based on the
maximum spanning tree over the fully connected sentence
graph. The individual strength of dependency within term
pairs is measured in terms of the Jaccard coëfficient. They
later refine this model by advancing from dedicated sentence
trees to entire forests [15] of trees for each connected com-
ponent in the sentence graph. Cao et al. [5] use Bayesian
networks to combine two sources of term dependence: co-
occurrence and semantic relatedness. The latter is expressed
in terms of proximity in the WordNet graph. While most
approaches define document language models and compare
their respective likelihoods of having generated the query,
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Bai et al. [1] propose a term-dependency query model in or-
der to account explicitly for query expansion. Metzler and
Croft [13] learn Markov Random Fields that account for
various forms of term dependence on the basis of arbitrary
feature vectors. Bendersky et al. [3, 2] propose a learning
to rank approach that accounts for higher order term and
concept dependencies using hypergraphs. Shi and Nie [17]
investigate different dependence weighting schemes based on
the concept’s utility in the respective retrieval task.

In this paper, we present the use of copulas, a robust
statistical model family that is able to explicitly decouple
marginal observations (i.e., the individual likelihoods of gen-
erating terms) from their underlying dependency structures.
Comparing to a number of well-known baseline methods and
evaluating on a large-scale standard dataset, we show the
competitive performance of this novel approach to depen-
dency modelling.

2. METHODOLOGY
In this section, we will give a brief overview of the for-

mal copula framework, introducing the relevant notation
and conventions. For a more comprehensive introduction
to the topic, please refer to the previous IR applications by
Eickhoff et al. [8, 9], or the surveys by Embrechts [10] and
Schmidt [16].
Let X be a k-dimensional random vector of observations
that we wish to use as input to our copula model:

Xk = (x1, x2, . . . , xk)

The copula allows us to model the likelihood of observing X
by offering computationally efficient approximations to the
true joint probability distribution in the high-dimensional
space of cardinality k. As a first step, copulas require input
scores Uk to be uniformly distributed in the [0 . . . 1] inter-
val. We can achieve this by defining a set of transformations
F (X) between raw marginal observations X and their nor-
malized equivalents on the unit cube U .

Uk = (u1, u2, . . . , uk) = F (X) = (f1(u1), f2(u2), . . . , fk(uk))

An easy example of such a function is the empirical distri-
bution function f̂ :

f̂(t) = 1
n

∑
1 {xi ≤ t}

The cumulative distribution function C for all copulas is
fully defined in terms of a generator ψ and its inverse ψ−1:

C(u1, u2, . . . , uk) = ψ−1(ψ(u1) + ψ(u2) + . . .+ ψ(uk))

There are many concrete instantiations of such copula func-
tions. Each copula family defines their own generator and
inverse. A previous study [8] compared a wide range of cop-
ula families for the task of Web retrieval, finding Gumbel
copulas to be the most adequate choice in this setting. For
reasons of space, this paper builds on the previous findings
and concentrates exclusively on Gumbel copulas. Their gen-
erators are given in the following form:

ψ−1(t) = exp(−t
1
θ )

ψ(t) = (−log(t))θ

The resulting distribution function for a 2-dimensional Gum-
bel copula is, for example:

C(u1, u2) = exp(−((−log(u1))θ + (−log(u2))θ)
1
θ )

Once the choice of copula family is made, we are left with
just a single parameter θ that allows us to control the strength
of dependency between the individual marginal observations
u. If we, for example, set θ = 1, our distribution function
defaults to the case of conditional independence:

Cθ=1 = exp(−(−log(u1)) + (−log(u2))) = u1 ∗ u2

Any choice of θ > 1 results in an increasing degree of con-
ditional dependency between the k dimensions of our ob-
servation. At this point, we have introduced all relevant
components for our original use case of statistical language
modelling. A traditional unigram language model describes
the likelihood of observing a string of text T under a given
class c as the product of the individual likelihoods of each
term:

P (T |c) = P (t1|c)P (t2|c) . . . P (t|T ||c)

The same can be achieved under the copula framework by
considering the class-conditional probabilities of observing
individual terms t1, t2, . . . as our marginal observations, mak-
ing the dimensionality of our copula k = |T |:

P (T |c) = Cθ=1(P (t1|c), P (t2|c), . . . P (t|T ||c))

By choosing θ = 1, we ensure conditional independence be-
tween the marginal term observation likelihoods, giving us
the standard unigram language model. As we however in-
crease θ, the strength of dependency between the individual
terms increases. This ability to account for term depen-
dence makes the copula framework a powerful alternative to
the standard language modelling scheme. At this point, any
setting of θ globally describes the relationship between all
terms. In practice, however, we much rather want a select
few terms to depend on each other, while the majority of
terms occur indeed independently.

This is easily achieved by using nested copulas. Instead
of combining all dimensions in a single step as described
earlier, they allow for a nested hierarchy of multiple copu-
las that estimate joint distributions for sub sets of the full
term space and subsequently combine scores until one global
model is obtained. Generally, an example of a fully nested
copula with k dimensions is given by:

C0(u1, C1(u2, C2(. . . , Ck−2(uk−1, uk))))

By means of the structure of the nesting “tree”, nested cop-
ulas can explicitly model which dimensions depend on each
other directly. Instead of the global θ parameter discussed
earlier, each of the constituent copulas defines their respec-
tive θi, determining the strengths of these (per-dimension)
dependencies. This mechanism gives nested copulas a theo-
retical advantage in flexibility over their non-nested coun-
terparts. Effectively, this allows us to describe formally
grounded probabilistic models under which select term pairs
show dependencies (θ > 1) while the majority of terms oc-
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Cθ=1

P(“greenland”)P(“in”)P(“is”)Cθ>1

P(“harsh”)P(“winter”)

Figure 1: The copula dependence tree for the sentence “Winter is harsh in Greenland.” shows significant
dependence between the terms “winter” and “harsh” while the remaining terms occur independently.

cur independently of each other (θ = 1). Figure 1 shows an
example of such a situation.

At this point, the final missing component in our language
modelling scheme is a way to determine the concrete settings
of θ for a pair of terms. To this end, we define conditional
dependency in terms of frequency of co-occurrence in a doc-
ument corpus and rely on two widely used co-occurrence
metrics. The point-wise mutual information between terms
t1 and t2 as well as their Jaccard coefficient measure in which
fraction of sentences the terms co-occur.

PMI (t1, t2) = log2
P (t1,t2)
P (t1)P (t2)

J(t1, t2) = |t1 ∩ t2|
|t1 ∪ t2|

Finally, the dependency parameter θt1,t2 is defined on the
basis of the concrete choice of metric m ∈ {PMI , J} and
its collection-wide metric mean (µPMI , µJ) across all po-
tential term pairs. All those pairs of higher-than-average
co-occurrence frequency are assigned values of θ proportion-
ally to their relative co-occurrence rate. Since θ is defined
in the range [1,∞) and the resulting scores scale in a non-
linear fashion, there is no need to further address or remove
outlier pairs of extremely high frequency.

θm,t1,t2 =

{
m(t1,t2)
µm

if m(t1, t2) > µm

1 else

3. EXPERIMENTS
To empirically test the performance of the previously pre-

sented copula-based language modelling scheme, we investi-
gate its performance at the task of adhoc document retrieval.
Instead of modelling the likelihood of observing a given doc-
ument under a topic specific language model, we will now es-
tablish one distinct model per document and compare their
respective likelihoods of having generated the query q.

P (rel|q, d) ≈ P (q|d)

P (q|d)indep =
|q|∏
i=1

P (wi|d)

P (q|d)cop = Cd(w1, w2, . . . , wn)|w ∈ q

For our experimental comparison, we rely on the widely
used ClueWeb’12 corpus, a collection of 730 million authen-
tic Web documents. Our 50 topics originate from TREC’s
2013 Adhoc retrieval task [6]. We contrast our method’s

Table 1: Retrieval performance on ClueWeb’12 and
TREC 2013 Adhoc topics at a cut-off threshold of
20 retrieved documents.

Model Precision Recall F1 MAP

Unigram LM 0.31 0.22 0.26 0.41
Bigram LM 0.34 0.26 0.3 0.45

SenTree 0.35 0.28 0.31 0.47
MRF 0.38 0.31 0.34 0.51

Copula LM 0.41* 0.35* 0.38* 0.52

performance with a number of established as well as state-
of-the-art baselines such as standard unigram and bigram
language models, Nallapati’s sentence trees [14], as well as
the Markov Random Field model [13] and apply Laplace
smoothing to all LM variants in order to account for pre-
viously unseen query terms. Table 1 details the respective
performances obtained by the various methods in terms of
precision, recall, F1 and MAP, each computed at a cut-off
rank of 20 retrieved documents. Statistically significant im-
provements over all baseline methods are indicated by the
asterisk character. Statistical significance was tested using
a Wilcoxon signed-rank test at α ≤ 0.05-level. We can note
that, due to their wider context, the classification perfor-
mance of bigram language models significantly exceeds that
of the lower-order model. SenTrees as well as the MRF
model which explicitly capture term dependence show even
higher classification performance. Finally, our copula lan-
guage model yields significant performance improvements
across most metrics and baselines. The improvements over
the MRF model were only significant for some of the con-
sidered metrics.

4. CONCLUSION
In this paper, we demonstrated the use of the copula

framework, a model family from the field of robust statis-
tics, for representing term dependencies in language models.
The main advantages of the proposed model are its formal
rigour, the low model complexity in terms of training effort
as well as disk space requirements and its high degree of
flexibility. As an additional advantage, copulas have been
previously shown [9] to be beneficial for qualitative manual
inspection of results.

Our experiments, based on a sizeable document collection
(ClueWeb’12) confirm the competitive performance of the
proposed model in comparison with a number of state-of-
the-art baselines.
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The present paper describes early results of an ongoing
body of research. Consequently, there are numerous direc-
tions for future work that are interesting to explore: (1) In
this paper, we investigated “single-layer” dependency struc-
tures with a nesting depth of 1. The nested copula frame-
work, however, is able to capture arbitrarily complex struc-
tures. Given a modified dependency estimation scheme, the
model can easily account for cases of fine-grained multi-
level dependencies. (2) Similarly, the current model regards
only dependencies of degree 2. Since the copula framework
is able to account for higher-degree dependencies (i.e., be-
tween three or more terms) this is another promising alley
for continued research. (3) Previous work has investigated
different forms of inter-term dependency, including, for ex-
ample, semantic proximity. It would be easy to integrate
such additional sources of evidence into our θ estimation
step. (4) We would like to draw from the existing wealth of
topic modelling techniques in order to describe not merely
the dependency structure between individual terms but also
between terms and more high-level (latent) concepts, allow-
ing for exciting new insights. (5) Finally, we would like to
explore means of representing local term context into the de-
pendency model. Take for instance the two terms “new” and
“york”. In the query [affordable real estate on the US east
coast] these terms clearly have some dependency, whereas
they probably are less dependent when the query is [afford-
able real estate in yorkshire, UK]. The current paper high-
lights the applicability of the context invariant method for
general queries. In the future we will additionally investigate
the importance of the immediate context.
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