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ABSTRACT
Topic models such as Latent Dirichlet Allocation (LDA) have been
widely used in information retrieval for tasks ranging from smooth-
ing and feedback methods to tools for exploratory search and discov-
ery. However, classical methods for inferring topic models do not
scale up to the massive size of today’s publicly available Web-scale
data sets. �e state-of-the-art approaches rely on custom strategies,
implementations and hardware to facilitate their asynchronous,
communication-intensive workloads.

We present APS-LDA, which integrates state-of-the-art topic
modeling with cluster computing frameworks such as Spark us-
ing a novel asynchronous parameter server. Advantages of this
integration include convenient usage of existing data processing
pipelines and eliminating the need for disk writes as data can be
kept in memory from start to �nish. Our goal is not to outperform
highly customized implementations, but to propose a general high-
performance topic modeling framework that can easily be used in
today’s data processing pipelines. We compare APS-LDA to the
existing Spark LDA implementations and show that our system
can, on a 480-core cluster, process up to 135× more data and 10×
more topics without sacri�cing model quality.
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1 INTRODUCTION
Probabilistic topic models are a useful tool for discovering a set
of latent themes that underlie a text corpus [2, 6]. Each topic is
represented as a multinomial probability distribution over a set of
words, giving high probability to words that co-occur frequently
and small probability to those that do not.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5022-8/17/08. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3084135

Parameter Server 1 Parameter Server 2 Parameter Server 3

Spark Worker Spark Worker Spark Worker Spark Worker

Spark Driver

Figure 1: High-level overview of the Glint parameter server
architecture and its interaction with Spark. �e parameter
servers provide a distributed and concurrently accessed pa-
rameter space for the model being learned.

Recent information retrieval applications o�en require very
large-scale topic modeling to boost their performance [13], where
many thousands of topics are learned from terabyte-sized corpora.
Classical inference algorithms for topic models do not scale well to
very large data sets. �is is unfortunate because, like many other
machine learning methods, topic models would bene�t from a large
amount of training data.

When trying to compute a topic model on a Web-scale data set
in a distributed se�ing, we are confronted with a major challenge:

How do individual machines keep their model synchronized?

To address this issue, various distributed approaches to LDA have
been proposed. �e state-of-the-art approaches rely on custom
strategies, implementations and hardware to facilitate their asyn-
chronous, communication-intensive workloads [3, 12, 13]. �ese
highly customized implementations are di�cult to use in practice
because they are not easily integrated in today’s data processing
pipelines.

We propose APS-LDA, a distributed version of LDA that builds on
a widely used cluster computing framework, Spark [14]. �e advan-
tages of integrating model training with existing cluster computing
frameworks include convenient usage of existing data-processing
pipelines and eliminating the need for intermediate disk writes
since data can be kept in memory from start to �nish [10]. However,
Spark is bound to the typical map-reduce programming paradigm.
Common inference algorithms for LDA, such as collapsed Gibbs
sampling, are not easily implemented in such a paradigm because
they rely on a large mutable parameter space that is updated concur-
rently. We address this by adopting the parameter server model [9],
which provides a distributed and concurrently accessed parameter
space for the model being learned (see Fig. 1).
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2 DISTRIBUTED LDA
We present APS-LDA, our distributed version of LDA, which builds
on the LightLDA algorithm [13]; it uses an asynchronous version
of the parameter server, as we will detail in Section 3.

2.1 LightLDA
LightLDA performs a procedure known as collapsed Gibbs sam-
pling, which is a Markov Chain Monte-Carlo type algorithm that
assigns a topic z ∈ {1, . . . ,K } to every token in the corpus. It then
repeatedly re-samples the topic assignments z. �e LightLDA algo-
rithm provides an elegant method for re-sampling the topic assign-
ments in O (1) time by using a Metropolis-Hastings sampler. �is is
important because sampling billions of tokens is computationally
infeasible if every sampling step would use O (K ) operations, where
K is a potentially large number of topics.

To re-sample the topic assignments z, the algorithm needs to
keep track of the statistics nk , nwk and ndk :
• nk : Number of times any word was assigned topic k
• nwk : Number of times word w was assigned topic k
• ndk : Number of times a token in document d was assigned

topic k
It is clear that the document-topic countsndk are document-speci�c
and thus local to the data and need not be shared across machines.
However, the word-topic counts nwk and topic counts nk are global
and require sharing. �e parameter server provides a shared inter-
face to these values in the form of a distributed matrix storing nwk ,
and a distributed vector storing nk .

2.2 APS-LDA: A Re-design of LightLDA
Despite its a�ractive properties, LightLDA has an important short-
coming. It uses a stale-synchronous parameter server in which
push requests are batched together and sent once when the algo-
rithm �nishes processing its current partition of the data. �is
architecture uses a �xed network thread and may cause a stale
model, where individual machines are unable to see updates from
other machines for several iterations.

In contrast, our approach sends push requests asynchronously
during the compute stage. �ese more frequent but smaller updates
have a number of essential advantages:
(1) It decreases the staleness of the model while it is computing.

With our approach it is possible to see updates from other
machines within the same iteration over the data, something
that is not possible with the standard parameter server.

(2) It makes mitigating network failure easier as small messages
can be resent more e�ciently.

(3) It enables the algorithm to take advantage of more dynamic
threading mechanisms such as fork-join pools and cached thread
pools [11].

�e move from such a �xed threaded design to a fully asynchro-
nous one requires a re-design of LightLDA. Algorithm 1 describes
the APS-LDA method. At the start of each iteration, the algorithm
performs a synchronous pull on each processor p to get access to
the global topic counts nk . It then iterates over the vocabulary
terms, and asynchronously pulls the word-topic counts nwk (line 6).
�ese asynchronous requests call back the Resample procedure
when they complete. �e Resample procedure (line 12) starts by

Algorithm 1 APS-LDA: Asynchronous Parameter Server LDA.
1: P ← Set of processors,
2: D ← Collection of documents,
3: V ← Set of vocabulary terms

4: for p ∈ P in parallel do
5: Dp ⊆ D

6: nk ← SyncPull({nk | k = 1 . . .K })
7: forw ∈ V do
8: on AsyncPull({nwk | k = 1 . . .K })
9: call Resample(Dp ,nwk ,nk )

10: end for
11: end for

12: procedure Resample(Dp ,nwk ,nk )
13: a ← AliasTable(nwk )
14: for (w, zold) ∈ d ∈ Dp do
15: znew ←MetropolisHastingsSampler(a,d,w, zold,nk ,nwk )
16: AsyncPush({nwk ← nwk + 1}) for k = znew
17: AsyncPush({nk ← nk + 1}) for k = znew
18: AsyncPush({nwk ← nwk − 1}) for k = zold
19: AsyncPush({nk ← nk − 1}) for k = zold
20: end for
21: end procedure

computing an alias table on the available word-topic counts nwk .
�is alias table is a datastructure that can sample from a categorical
probability distribution in amortized O (1) time. �e algorithm then
iterates over the local partition of the dataDp where it resamples ev-
ery (token, topic) pair using LightLDA’s O (1) Metropolis-Hastings
sampler, which requires the earlier mentioned alias table. Changes
to the topic counts are pushed asynchronously to the parameter
server while it is computing (Lines 16 to 19)

Note that all of our push requests either increment or decrement
the counters nwk and nk . �e parameter server exploits this fact
by aggregating these updates via addition, which is both commuta-
tive and associative. �is eliminates the need for complex locking
schemes that are typical in key-value storage systems. Instead,
the updates can be safely aggregated through an atomic integer
structure that is easy to implement.

In the next section, we will discuss the asynchronous parameter
server that makes the implementation of this algorithm possible.

3 PARAMETER SERVER ARCHITECTURE
�e traditional parameter server architecture [8] is a complete
machine learning framework that couples task scheduling, a dis-
tributed (key, value) store for the parameters and user-de�ned
functions that can be executed on workers and servers. As a result,
there is considerable complexity in the design, setup and imple-
mentation of a working parameter server, making it di�cult to use
in practice.

We present Glint,1 an open-source asynchronous parameter
server implementation. Our implementation is easily integrated
with the cluster computing framework Spark, which allows us
to leverage Spark features such as DAG-based task scheduling,
straggler mitigation and fault tolerance. �is integration is realized
1h�ps://github.com/rjagerman/glint/
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by decoupling the components of the traditional parameter server
architecture and removing the dependency on task scheduling. �is
is accomplished by simplifying the parameter server interface to a
set of two operations:
(1) Asynchronously ‘Pull’ data from the servers.

�is will query parts of the matrix or vector.
(2) Asynchronously ‘Push’ data to the servers.

�is will update parts of the matrix or vector.
�e goal of our parameter server implementation is to store a large
distributed matrix and provide a user with fast queries and updates
to this matrix. In order to achieve this, it will partition and distribute
the matrix to multiple machines. Each machine only stores a subset
of rows. Algorithms interact with the matrix through the pull and
push operations, unaware of the physical location of the data.

3.1 Pull action
Whenever an algorithm wants to retrieve entries from the matrix
it will call the pull method. �is method triggers an asynchronous
pull request with a speci�c set of row and column indices that
should be retrieved. �e request is split up into smaller requests
based on the partitioning of the matrix such that there will be at
most one request per parameter server.

Low-level network communication provides an ‘at-most-once’
guarantee on message delivery. �is is problematic because it is
impossible to know whether a message sent to a parameter server
is lost or just takes a long time to compute. However, since pull
requests do not modify the state of the parameter server, we can
safely retry the request multiple times until a successful response
is received. To prevent �ooding the parameter server with too
many requests, we use an exponential back-o� timeout mechanism.
Whenever a request times out, the timeout for the next request is
increased exponentially. If a�er a speci�ed number of retries there
is still no response, we consider the pull operation failed.

3.2 Push action
In contrast to pull requests, a push request will modify the state
on the parameter servers. �is means we cannot naı̈vely resend
requests on timeout because if we were to accidentally process a
push request twice it would result in a wrong state on the parameter
server. We created a hand-shaking protocol to guarantee ‘exactly-
once’ delivery on push requests.2 �e protocol �rst a�empts to
obtain a unique transaction id for the push request. Data is trans-
mi�ed together with the transaction id , allowing the protocol to
later acknowledge receipt of the data. A timeout and retry mech-
anism is only used for messages that are guaranteed not to a�ect
the state of the parameter server. �e result is that pushing data to
the parameter servers happens exactly once.

3.3 LDA implementation
We have implemented the APS-LDA algorithm using Spark and
the asynchronous parameter server. A general overview of the
implementation is provided in Fig. 2. �e Spark driver distributes
the Resilient Distributed Dataset (RDD) of documents to di�erent
workers. Each worker pulls parts of the model from the parameter

2h�ps://github.com/rjagerman/glint/blob/master/src/main/scala/glint/models/client/
async/PushFSM.scala
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Figure 2: Overview of the implementation. A dataset is split
into di�erent partitions by Spark. Tokens in each partition
are resampled by the Metropolis-Hastings algorithm. Up-
dates are pushed asynchronously to the parameter server.

server and constructs corresponding alias tables. �e worker then
iterates over its local partition of the data and resamples the to-
kens using the Metropolis-Hastings algorithm. Updates are pushed
asynchronously to the parameter server while the algorithm is
running.

4 EXPERIMENTS
�ere is no point in optimizing and scaling inference if the quality
of the trained model should su�er. For this reason, we want to
validate that the e�ectiveness of the trained model remains the
same. It should be noted that our goal is not to outperform highly
customized implementations such as LightLDA.

Instead, we aim to integrate state-of-the-art topic modeling with
Spark such that large topic models can be e�ciently computed
in modern data processing pipelines. To this end, we compare
our implementation against existing Spark implementations on
the same hardware and con�guration. We compare APS-LDA to
two existing state-of-the-art LDA algorithms provided by Spark’s
MLLib: �e EM algorithm [1] and the online algorithm [5]. We run
our experiments on a compute cluster with 30 nodes, with a total
of 480 CPU cores and 3.7TB RAM. �e nodes are interconnected
over 10Gb/s ethernet. �e ClueWeb12 [7] corpus, a 27-terabyte
Web crawl that contains 733 million Web documents, is used as the
data set for our experiments.

To validate that our methods do not sacri�ce the quality of the
trained model we will compare the three algorithms on small sub-
sets of ClueWeb12. We vary either the number of topics (20–80) or
the size of the data set (50GB–200GB) to measure how the di�erent
systems scale with those variables and use perplexity as an indi-
cator for topic model quality. Due to the large size of the data, a
hyperparameter sweep is computationally prohibitively expensive
and we set the LDA hyperparameters α = 0.05 and β = 0.001 which
we found to work well on the ClueWeb12 data set. We split the data
in a 90% training set and a 10% test set and measure perplexity on
the test set. Fig. 3 shows the results of the experiments. We observe
that, barring some variations, the perplexity is roughly equal for
all algorithms. However, our implementation has a signi�cantly
be�er runtime. We use a log-scale for the runtime in minutes.
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Figure 3: Performance of APS-LDA compared to the EM [1]
and Online [5] algorithms for di�erent data set sizes (50GB–
200GB) and di�erent numbers of topics K (20–80).

When a�empting to increase the data set size beyond 200GB, the
default Spark implementations cause numerous failures due to an
increase in runtime and/or shu�e write size. Our implementation
is able to e�ortlessly scale far beyond these limits and compute an
LDA model on the full ClueWeb12 data set (27TB) with 1,000 topics
in roughly 80 hours (see Fig. 4). �is is an increase of nearly two
orders of magnitude, both in terms of dataset size and number of
topics, using identical hardware and con�guration. We have made
the �nal 1,000-topic LDA model publicly available in CSV format.3

5 CONCLUSION
We have presented APS-LDA, a distributed method for comput-
ing topic models on Web-scale data sets. It uses an asynchronous
parameter server that is easily integrated with the cluster com-
puting framework Spark. We conclude our work by revisiting the
challenge that was presented in the introduction:

How do individual machines keep their model synchronized?

�e asynchronous parameter server solves this by providing a dis-
tributed and concurrently accessed parameter space for the model
being learned. �e asynchronous design has several advantages
over the traditional parameter server model: it prevents model
staleness, makes mitigating network failure easier and enables the
system to use more dynamic threading mechanisms.

Our proposed algorithm APS-LDA, is a thorough re-design of
LightLDA that takes advantage of the asynchronous parameter
server model. We have implemented this algorithm and the asyn-
chronous parameter server using Spark, a popular cluster comput-
ing framework. �e resulting architecture allows for the computa-
tion of topic models that are several orders of magnitude larger, in
both dataset size and number of topics, than what was achievable
using existing Spark implementations. �e code of APS-LDA is
available as open source (MIT licensed) and we are also sharing a
1,000-topic LDA model trained on ClueWeb 12.

Finally, there are two promising directions for future work:
(1) Large-scale information retrieval tasks o�en require machine
learning methods such as factorization machines and deep learning,
which are known to bene�t from the parameter server architec-
ture [4]. By using an asynchronous parameter server, it may be

3h�p://cake.da.inf.ethz.ch/clueweb-topicmodels/
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Figure 4: Perplexity of the 1,000-topic LDA model on
ClueWeb12.

possible to achieve signi�cant speedups. (2) Our current implemen-
tation of the asynchronous parameter server uses a dense represen-
tation of the data, due to the garbage collection constraint imposed
by the JVM runtime. By implementing sparse representations it
is possible to scale even further as this will reduce both memory
usage and network communication overhead.
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