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ABSTRACT
We introduce a modification of an established reinforcement learn-

ing method to facilitate the widespread use of temporal difference

learning for IR: interpolated substate temporal difference (ISSTD)

learning. While reinforcement learning methods have shown suc-

cess in document ranking, these contributions have relied on rela-

tively antiquated policy gradient methods like REINFORCE. These

methods bring associated issues like high variance gradient esti-

mates and sample inefficiency, which presents significant obstacles

when training deep neural retrieval models. Within the reinforce-

ment learning community, there exists a substantial body of work

on alternative methods of training which revolve around temporal

difference updates, such as Q-learning, Actor-Critic, or SARSA, that

resolve some of the issues seen in REINFORCE. However, temporal

difference methods require the full size of the state to be modeled

internally within the ranking model, which is unrealistic for deep

full text retrieval or first stage retrieval. We therefore propose IS-

STD, operating on the substate, or individual documents in the case

of matching models, and interpolating the temporal difference up-

dates to the rest of the state. We provide theoretical guarantees on

convergence, enabling the drop in use of ISSTD for any algorithm

that relies on temporal difference updates. Furthermore, empirical

results demonstrate the robustness of this approach for deep neural

models, outperforming the current policy gradient approach for

training deep neural retrieval models.
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1 INTRODUCTION
The core objective of an information retrieval (IR) model is to iden-

tify the documents or passages in a collection that sufficiently

address the information needs of the user. As there can be multiple

items that accomplish this, the objective of search in IR is then

to rank a collection under some external metric, be it to satisfy

the user, ensure diversity, or maintain fairness [2, 13, 26]. Recently,

reinforcement learning (RL) methods have been introduced as al-

ternative methods to achieve effective performance [14, 21, 34, 42].

Under this regime, retrieval models (policies) can directly maximize

any reward without relying on fully or weakly supervised labels.

Almost all of these works rely on one specific method in RL when

used for IR: policy gradient via REINFORCE [34, 35, 37, 39]. REIN-

FORCE based retrieval models treat the documents as a learned

probability distribution and iteratively samples them to determine

a ranking. After all documents have been ranked, the model is up-

dated such that it will adjust this distribution to increase the chance

of sampling relevant documents based on the rewards it received.

An additional advantage and a powerful property of this approach

beyond directly maximizing some non-traditional, non-convex re-

ward function is the ease of incorporating this approach into any

model over any input size. A model trained via REINFORCE can

score documents individually with the only requirement being

to model all choices in a distribution via a softmax operation. In

this way, the model can incorporate information from all candi-

date non-relevant documents when updating its weights. However,

policy gradient and REINFORCE methods suffer from significant

drawbacks. First, updates to the model only occur at the end of a

session or episode. This results in online updating becoming a chal-

lenge. Second, the gradient approximation has very high variance

as document rankings are selected via Monte Carlo sampling [28].

To remedy these shortcomings, other works have proposed com-

plementary methods or alternative approaches [1, 10–12, 33]. The

core of these approaches rely on temporal difference (TD) updates.
Rather than only updating the model at the very end of an episode,

TD methods incrementally update the model after each document

ranking. Unfortunately, TD updates do not rely on a softmax oper-

ation and are thus unusable when the input is very large, such as

ranking the top n documents in neural architectures [8, 23].

In this paper, we show a modification of TD based algorithms,

Interpolated Sub-State TD (ISSTD), which allows current IR models

to be directly trained via TD updates without any modifications,

acting as a “drop-in” optimization method similar to REINFORCE

based approaches for IR tasks. This result provides the necessary
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machinery for TD based methods like Q-learning and Actor-Critic

to be used in any ranking task where the only current option is RE-

INFORCE. Theoretical analysis bounds the error introduced in this

method as well as convergence guarantees when certain reasonable

conditions are met. Empirically, we demonstrate that ISSTD meth-

ods are effective for ranking and leverage our theoretical result into

novel RL methods to outperform the current REINFORCE approach

for a number of neural architectures. Furthermore, ISSTD meth-

ods can achieve close to supervised performance, which represents

an approximate upper bound of the achievable performance of a

model trained using RL [28]. With these two results, our proposed

approach enables the theoretically grounded use of recent RL re-

search in any IR task and for any architecture, regardless of the size

of the input.

2 BACKGROUND
2.1 Reinforcement Learning
As this paper relies heavily on a theoretical understanding of RL to

extend TD methods to IR, we present the necessary background.

The core premise of RL is that it presents a framework for an agent

to learn from its actionswithin an environment. This can range from

canonical examples like robotic control [38] and game playing [7]

to even machine translation [36]. The agent can be a neural model,

child, program, or any process that is able to improve its future

actions based on the input it receives from the environment. In

the case of game playing, the environment would be a video game

while for machine translation it would be represented as the space

of possible translations and training examples. This environment

partially determines the reward to convey how well an agent’s

decisions satisfy some unknown objective. In our case of IR, the

environment is the set of documents to be ranked and the input

signal would be ametric used tomodel user satisfaction or relevance,

such as session duration, nDCG, MAP, etc. The last core principle

of RL is the sequential nature of decision-making.

A critical step in representing any task as a RL problem is for-

mally defining a Markov decision process (MDP). This MDP is

a mathematical model that determines the environment which

includes what we want our agent to learn. Defined as the tuple

(S,A, P,R,d0,γ ) representing the state space, action space, transi-

tion function P : S×A×S → [0, 1], reward functionR : S×A → R
, initial state distribution d0 and decay parameter γ .

The objective is then to find a policy π : S → A that maximizes

the expected total discounted reward Rt ∼ r (st ,at ) that the agent
can obtain,

J (π ) = E
[︂ ∞∑︂
t=0

γ tRt

|︁|︁|︁π ]︂ .
Closely related to this goal is the value function,

V π (s) = E
[︂ ∞∑︂
k=0

γ tRt+k

|︁|︁|︁st = s, π ]︂ = E[︂Gt

|︁|︁|︁st = s, π ]︂ (1)

which is the expected discounted return if the agent follows

policy π from state s . This differs from J as the discounted return

is now conditioned on a specific state rather than over all possible

situations. The goal is then to find some π∗ that achieves the highest
possible value for each state:

V ∗(s) = max

π ∈Π
E
[︂
Gt

|︁|︁|︁st = s, π ]︂ ∀s ∈ S.
The parallel to IR can be viewed as the value function measuring

how well our retrieval model π can rank a set of documents. We

would ideally want a retrieval model that can maximize our value

function for every query and set of candidate documents.

There exists a large body of work on finding a π∗, and this paper
will focus on TD learning for IR as an alternative to approaches

relying on Markov chain Monte Carlo sampling methods such

as policy gradient that have already been adapted for retrieval

tasks [31, 34, 37, 39, 41]. The fundamental idea behind TD learning

is to bootstrap from some initial value estimate via the Bellman

equation:

TV (s) = r (s,a) + γE[V (s ′)] (2)

where s ′ is the next state visited and will converge under certain

conditions [28]. It is straightforward to see where the concept of

TD comes from, T updates V based on the expected next state’s

discounted cumulative reward. Q-learning, SARSA, and other TD

based methods update via the function Q : S × A → R shown

below

Q(s,a) = E
[︂
Gt

|︁|︁|︁st = s,at = a, π
]︂

(3)

under the same contraction operator, T . While V represents the

cumulative reward from state s , Q captures the cumulative reward

from state s having taken action a.
Here, we highlight a key difference between Q-learning and

SARSA: the update for Q-learning will always be greedy, meaning

that the update underT will takeQ value of whatever action is best

in the next state s ′. This method of updating is considered off-policy,

as the agent is selecting actions that the current policy might not

necessarily take. In contrast, SARSA will follow the underlying π
and often takes an ϵ-greedy approach when selecting the next state

to update via TD learning. This off-policy approach suffers from

divergence in conditions where SARSA will converge [28]. This

plays an integral role for ISSTD later in this work.

Lastly, there are no limits on what defines Q or V in terms of

a function. These can be modeled via a table and trained under

dynamic programming, a linear function approximator Q(s,a) =
θ⊺ϕ(s) where ϕ is some state representation or a nonlinear func-

tion approximator like a neural net. Although all nonlinear func-

tion approximations of Q or V discard all convergence guarantees;

nonetheless, these nonlinear approaches achieve remarkable results

in challenging environments [4, 7, 38].

2.2 Related Work
The concept of directly maximizing some reward modeled by a

traditional IR metric has been well explored within the community.

The majority of these approaches, and all of those used for ranking

a large set of documents, rely on policy gradient and the REIN-

FORCE algorithm. For learning to rank tasks, Wei et al. introduce

MDPRank [34] which treats each query and a list of documents as

a single episode, and each action selects the most relevant docu-

ment of the yet to be ranked documents. They achieve competitive

results using REINFORCE to directly optimize the ranker. Using

the same MDP formulation and REINFORCE, MDPDIV [37] uses an

alternative reward signal to maximize diversity within a ranked list,



demonstrating the flexibility of an RL based optimization. Nogueira

and Cho [20] use this same optimization approach to reformulate a

query for improved retrieval performance, and while not the core

contribution of their work, Wang et al. [31] use REINFORCE to up-

date the generator in the IRGAN framework due to the magnitude

of the state space. Zeng et al. [41] introduce a policy optimized via

REINFORCE that directly attempts to improve multi-page search

via treating each page generation as a single step in an MDP. Re-

cently, Xu et al. [39] expand on MDPRank [34] by introducing a

pairwise policy gradient approach to reduce the variance found in

the Markov chain Monte Carlo method of sampling in REINFORCE.

At each step, the policy gradient agent observes the potential re-

ward of taking two actions and updates the weights of the policy

accordingly. They demonstrate both theoretically and empirically

the impact of reducing the variance of the gradient estimate within

the IR environment and motivate the need to incorporate mod-

ern RL methods for IR tasks. We have not observed any previous

work investigating the effective use of REINFORCE for deep neural

retrieval beyond a two-layer feedforward network.

However, there has been significant work that leverages poten-

tially more capable methods than REINFORCE for related tasks

where we do not observe the limitations discussed above. In the

case of item recommendation, Liu et al. [15] use a deep actor-critic

framework that relies on a TD component to reduce the variance

of policy gradient for item recommendation with marked success.

They also incorporate a replay buffer, a method that results in sig-

nificant improvement when incorporating TD learning [7]. Their

method represents the objective of our contribution, as enabling

efficient TD learning for very large state spaces will facilitate the

use of their more sophisticated methods such as actor-critic and pri-

oritized memory replay for document and passage ranking. Wang

and Jin [32] use the same actor-critic setup for multi-step coarse to

fine question answering, where the largest state in the MDP is a

single document.

Hu et al. [9] incorporate a variation of actor-critic called deep

deterministic policy gradient for the task of e-commerce sessions.

This approach further reduces the variance by allowing the agent to

operate only over the state space [12]. In addition, through a novel

construction of an e-commerce session MDP, the critic component

that relies on TD learning is able to perform a full backup.

To the best of our knowledge, there exists no work using TD

methods for IR where the state, or set of candidate documents, is

too large to compute in a single model. The reason for this is a

symptom of the Bellman update T and is discussed in detail in

Section 4.

3 MARKOV DECISION PROCESS
MDP construction directly impacts what the agent learns and is a

non-trivial task when translating real-world environments (IR) into

this formulation. As the contribution of the paper is the ISS based

agent for any MDP, we adopt the well-defined MDP proposed by

Wei et al. for feature-based L2R as the structure for the environment

as it favors the REINFORCE baseline while also empirically shown

to be a stable setting for RL retrieval models [34].

State:We construct the state s ∈ S as

[q,Dur , t] (4)

Symbol Definition
S State space

s ∈ S State

z ∈ s Substate

A Action space

a ∈ A Action

π Policy

fI R Retrieval model

θ Parameters

a′, s ′, θ ′ Action, State,θ at next step

t Time step

T : TV (s) = r (s,a) + γE[V (s ′)] Bellman Update

Q : S × A → R Q-function

V : S → R Value function

B(X) Functional space over some X space

P : B(X) → Rb Evaluation Operator

F : Rb → B(X) Interpolate Operator

γ Discount rate

α Learning rate

Q̂, V̂ , ̂θ Converged fixed point

Q∗,V ∗, θ∗ Optimal points

Table 1: Table of definitions.

where q is a query, Dur is a list of unranked documents where

di ∈ Dur = [d1,d2, ...,dn ], and t represents the current time step in

an episode. The terminal state occurs when |Dur | = 1. A substate

zi can then be viewed as [q,di , t] where di ∈ Dur . In the case of

deep learning, both q and di are represented as sequences of words

w from a shared vocabulary: q = {wi }
m
1
, d = {wi }

n
1
for a query of

lengthm and a document of length n.
Action: At each step, the policy chooses a document to rank

next from the set of unranked documented, Dur . Each candidate

represents an element in A.

Reward:We use reciprocal rank below, where Dr is the set of

all relevant documents with respect to q and Dnr are all other non-

relevant documents. The reward function r (s,a) is formally defined

as

r (s,a) =

{︄
0 a ∈ Dnr
1

t a ∈ Dr

with a representing the selection of a single document.

Transition: The transition function T : S ×A → S models the

dynamics of the environment and maps a state, action pair to a new

state. We structure the transition as a deterministic function,

T(st ,at ) = [q,Dur \ dat , t + 1],

where dat represents the document chosen at step t by action a.
We set Dur in d0 to be n highest scoring non-relevant documents

from the collection under BM25 [25] with q. We select n = 10 for

ease of analysis in our evaluation of our findings.

4 REINFORCEMENT LEARNING FOR
RETRIEVAL

In this section, we first introduce how RL is used for ranking, and

then we discuss why TD methods fail in the current IR regime. We



will then introduce ISSTD to gracefully handle these conditions. A

typical ranking model scores each document independently and

produces a ranking from these separate scores. Thus, one can view

individual documents di of a collection as a sub-state zi ∈ s . In
this representation, Z creates a partition of s such that

⋃︁
zi =

s,
⋂︁
zi = ∅. However, a state s ∈ S consists of all documents to be

ranked for a query or session. As discussed, policy gradient based

methods are a drop-in optimization method for ranking models.

This convenience is possible, as despite each document being scored

independently, policy gradient methods create a distribution over

all possible documents via the softmax function when selecting the

next document:

π (s) =
exp(fI R (q,di ))∑︁

j ∈ |Dur | exp(fI R (q,dj ))
=

exp(fI R (zi ))∑︁
j ∈ |Z | exp(fI R (zj ))

.

This representation enables independent document ranking regard-

less of the amount of candidate documents in s . In the case of TD

learning, this is not necessarily true. For example, in Q-learning [33]

where the TD update occurs via

Q(s,a) = Q(s,a) + α(s,a)(r (s,a) + γ max

a′
Q(s ′,a′) −Q(s,a)), (5)

the update, in either table lookup, linear, or nonlinear function

approximation, is reducing the error for the entire state’s represen-

tation. However, in the case of IR situations, we are unable to model

a single s entirely, and substitute Q(s,a) on the right hand side of

Eq.5 for the IR model operating over a single document. Thus the

actual update that would occur is

Q(s,a) = fI R (z) + α(s,a)(r (s,a) + γ max

z′
fI R (z

′) − fI R (z)). (6)

This now computes the value of a substate trajectory through the

MDP, removing information about all documents when updating

the IR model except for the documents z and z′, which are substates
of s . In order for TD to be used in IR, it would require a significantly

large compute cluster to handle all the documents in the entire state

simultaneously to allow for the use of Eq. 5. In the case of deep

learning, this is simply not feasible. Furthermore, competitive TD

methods rely on large memory replay buffers, which compounds

this issue due to the need to recompute 2|bm | |s | documents for each

update where |bm | is the batch size of the buffer. In the remainder

of this section, we introduce machinery such that Eq. 6, with a

small modification, is a valid substitute for Eq. 5 without loss of

guarantees. This modification facilitates the drop in use for any

typical IR task by showing that a standard learning to rank process

is a special case of an interpolated value function maintaining con-

vergence properties. Specifically, we show why Eq. 6 is a grounded

RL method for ranking situations where the model operates on

individual documents.

4.1 Interpolated Sub-State Temporal Difference
Learning

The key result in this section is that in function approximation

cases, where we rely on some parameterization θ to determine

a ranking, retrieval models trained using ISSTD over individual

documents will converge to a similar policy as the one trained with

TD methods operating on the entire document list. This parallel is

showcased in Figure 1, where we observe the substate trajectory as

individual documents.

Figure 1: Demonstration of the ISSTD regime used for TD
agents on IR tasks (bottom) compared to standard TD learn-
ing (top). As the reward is determined solely on the relevant
document, the final return is equivalent.

To accomplish this, we will first introduce the update rule for θ
(Eq. 7) and then provide themachinery needed to share update infor-

mation across separate points. Next, we show that the conventional

ranking method used in Eq. 6 satisfies the necessary requirements

for a valid interpolation operation across a set of basis points in

Lemma 4.1. Having established this result, we then proceed to draw

a parallel to previous work in standard state interpolation to prove

the convergence of Eq. 6. Finally, we connect the substate view of

Eq 6 to the full state view of Eq. 5 in Corollary 4.2.1 to confirm the

similarity of their converged policies.

In addition, we wish to highlight the limitation of the following

work as it assumes a direct mapping between a substate and the

reward. If the reward function depends on more than one document

per step such that Figure 1 is no longer an accurate depiction, then

the requirements on the interpolation are violated due to the loss

of the nonexpansion property.

4.1.1 Updating θ : Consider the case where we are using function

approximation for Q , parameterized by θ ∈ Rb . As we care about
the updates to our model, we will be focusing on the functional

space of Qθ : B(S × A) → R. A TD update for each dimension of

θ under the Bellman operator (T ) from Eq. 2 can be done via

∆θt i = αt iβ(zi ,ai , s)(Rt + γ max

a′
Qθt (s

′,a′) − θt i ), (7)

where zi ∈ Z is a set of basis points of s , Qθt is an interpolator

over S (such as the Q or V function defined in Eq. 1 and 5), αt i is
the learning rate for dimension i of θ at time t , and β is a bounded

measurable smoothing function [29]. A key note in this formulation

is that β allows the potential updating of multiple components of

θt for each basis point zi , allowing for a single update to affect the

value estimates of other states. Without loss of generality, the value

function and action-value function can be used interchangeably in

this section [29].

4.1.2 Decomposing and Interpolating: We next introduce two defi-

nitions, a decomposition method and an interpolator, necessary to

show equivalence with Eq. 6 and enabling the full use of TD meth-

ods for ranking large states. Intuitively, the operator P decomposes

the value function to only operating on the basis points, and then

F interpolates its values across the parameter space.



Definition 4.1. P : B(S) → Rb is a composite pointwise eval-

uation operator with respect to a fixed set of basis points Z =
{(z1,v1), . . . , (zn,vn )} if (PV )i = V (zi ).

Definition 4.2. Let F : R → B(S) be mapping from parameters

to functions over the space S. Then F is interpolative with respect

to the set of basis points of S if for all V ∈ B(S), PFP = P.
Furthermore, F is non-expansive interpolator if for the set of basis

points Z and corresponding values H = {h1, . . . ,hn }, then for any

parameterization θ , F (θ )(zi ) = hi .

The nonexpansive property of F requires that the evaluation of

the value function at the basis points does not change during this

interpolation to preserve the function when reconstructed. Having

these properties results in FP acting as an interpolative nonexpan-

sion, which implies Vt+1 = FPTVt converges to V ∗ despite the

nontraditional value updates [29]. Using this established result, we

show that the conventional pointwise evaluation used in ranking

models is an extension of the above.

To satisfy this objective, we introduce the idea that the common

pointwise scoring used in ranking models is a valid interpolation.

A close inspection of Eq. 6 shows that there is no smoothing being

done when updating the Q function in this setting. This operation

can therefore be modeled as a first-order spline interpolation F
over θ , visually represented in Figure 2. In the case of ranking, each

document represents a basis point of our state space, and F creates

a Voronoi diagram where any point in the space is assigned the

value of the document that is closest to it. We provide the formal

discussion below:

Lemma 4.1. The first order spline interpolation F , Fu =
∑︁b
i=1 ui1Ai is

a measurable non-expansion in the sup-norm over some basis set

Z and 1Ai as the characteristic function of A such that

1Ai (x) =

{︄
1 x ∈ Ai

0 x ∉ Ai

Proof. We define Ai to be a partition of Z such that Ai covers
the k-nearest neighborhood around zi with k = 1. This results in a

piecewise continuous evaluation over basis Z where Fui = ui for
the entire space Ai around point zi . Then we observe | |Fu | |∞ =
| |u | |∞. For any u,д in the same Banach space,

| |Fu − Fд | |∞ = | |u − д | |∞ (8)

which satisfies the requirement of a non-expansion. F is also piece-

wise continuous and measurable, i.e.

∑︁b
i=1 ui1Ai is also measur-

able. □

This spline interpolation, visually represented in Figure 2, acts

as our smoothing function for updates across our basis points Z .

4.1.3 ISSTD Convergence: Now that we have defined a smoothing

function that satisfies Eq. 6 used for ranking, we next show that

it will converge under certain conditions by leveraging a previous

result which shows convergence when updates are shared across

entirely different states [29]:

Proposition 4.2. LetV : B(S) → R be a linear function approxi-
mator defined by Eq. 1, then the substate update

V (s) = fI R (z) + α(s)(r (s,a) + γE[fI R (z
′)] − fI R (z)) (9)

Figure 2: A visual representation of how substate values par-
tition the state space. The documents represent the basis
points and the first order spline operation interpolates their
values to their surrounding neighborhoods.

converges to a V̂ ∗ if (i)PV exists, (ii) F is a non-expansive interpolation
such that | |F f1 − F f2 | | ≤ γ | | f1 − f2 | |, and (iii) Z = {(zi ,vi )}n

1
is

the set of basis points of s such that Z creates a partition of s with⋃︁
zi = s,

⋂︁
zi = ∅.

Proof. In order to do so, we use the algorithm introduced by

Gordon [5], which includes the projection and interpolation opera-

tors previously defined, to update the weights of the value function

from Eq. 1,

θt+1 = PTFθt (10)

where T is the Bellman operator.

Then we can see that value iteration can be modeled via

Vt+1 = TFPVt . (11)

This provides the critical first step of the drop-in placement of

TD updates for training ranking models. In this representation, P

acts as a decomposition of V to the point-wise evaluation of the

expected return of that basis point. For ranking, these are individual

document scores over the entire state. As F is a non-expansion,

then Fθt converges to ̂θ∗ [5]. We observe a direct mapping of a

satisfactory P to the case seen in Eq. 9 where fI R is a composite

pointwise evaluation of V such that each basis point consists of di .
Formally,

θI R (zi ) = (PV )i (12)

deconstructs some larger retrieval model that fully captures all

possible documents within a reranking list or a collection as its

input and decomposes it to individual functions over each zi .
Next, we select an F that can interpolate the mapping from

the parameter θ to a V ∈ B(S) with respect to S . Szepesvári and
Smart [29] prove that if FP is a interpolative non-expansion, then

Vt+1 = FPTVt converges to V
∗
. By Lemma 4.1, a first order spline

is a non-expansion. As the smoothing is 0 everywhere except where

the characteristic function is active, β(zi ,a, s) in Eq. 7 becomes an



indicator variable. This results in βt i = 0 for everywhere except

for basis zi .
Thus, as long as

∞∑︂
i=0

α = ∞,
∞∑︂
i=0

α2 < ∞ (13)

meaning all states are visited infinitely often, then TV (z) → V̂ ∗

and TQ → Q̂∗ even when individual substates are updated inde-

pendently for value iteration and Q-learning respectively [29]. □

While we show that typical learning to rank updates are a spe-

cial case of interpolation, observe that more suitable smoothing

functions such as radial basis function kernels or Gaussian pro-

cesses satisfy the nonexpansive properties of F while potentially

improving sample efficiency. We leave the evaluation of alternative

smoothing methods to future work.

4.1.4 Similarity of ISSTD and the trueQ-function: Lastly, we show

that the Q-function learned via ISSTD approximates the true Q-
function if the retrieval model were to observe the entire document

ranked list.

Corollary 4.2.1. Let | |maxz fI R (z) −Q(s,a)| | ≤ ϵ such that

E[| |max

z
fI R (z) −Q(s,a)| |] = 0

under any MDP such that every state is visitable, limt→∞ P(st =
s
terminal

) = 1, and

∑︁∞
i=0 α = ∞,

∑︁∞
i=0 α

2 < ∞, then

QI SS (s,a) = fI R (z)+ α(s,a)(r (s,a)+γ max

z′
fI R (z

′) − fI R (z)) (14)

converges to oscillate within a region C of the fixed a point Q̂∗

defined by

Q(s,a) = Q(s,a) + α(s,a)(r (s,a) + γ max

a′
Q(s ′,a′) −Q(s,a)) (15)

Proof. If we treat a π that operates on an entire s as an epsilon

greedy π (s) = argmaxaQ(s,a), then QI SS follows the exact policy

as the underlying generating policy from Q and becomes SARSA

in this instance. We then represent QI SS to be a linear function

approximator of Q . If we define Q(s, ·) as

Q(s, ·) =< fI R (z1), . . . , fI R (zn ) >, (16)

then we observe that QI SS is the operation θI SS
⊺Q(s, ·) and acts

as one hot vector such that | |θI SS | |∞ = 1, | |θI SS | |2 = 1. Then this

is a linear function approximator of the π generated by following

Q-learning, i.e. SARSA. We leverage the result from Gordon [6]

that states that SARSA will converge to linear region around the

generating π under linear function approximation. Thus QI SS will

converge to a region C around the fixed point Q̂∗. □

Having established that operating on individual documents is

a valid extension of TD methods over the entire candidate docu-

ment set, we introduce a recent TD based method to evaluate the

feasibility of TD methods for IR.

Figure 3: Overview of the standard full state SF architecture
(a) and the ISSTD adaptation for single Query-Document
scoring (b).

Figure 4: The task of ψ in the SF setting is to predict the fu-
ture documents to be ranked given selecting the most rele-
vant document at the current step. This forced representa-
tion learning coerces the SF based retrieval model to con-
sider not only individual documents when determining rel-
evance, but other documents it might see in a candidate
ranked list.

5 SUCCESSOR FEATURES FOR IR
With the machinery developed above, we are now able to incorpo-

rate successor feature (SF) learning [1], a powerful TD technique

with unique properties which pair well with IR tasks. We intro-

duce SF learning in the standard s,a notation for clarity, and ap-

ply the spline interpolation discussed above during training. This

framework offers two significant advantages over conventional

Q-learning: (1) it formally separates representation and relevance

judgements, reducing variance within the structure of the relevance

portion, and (2) better captures the uncertainty of a current docu-

ment’s ranking due to the successive state representations [1, 10].
While the linear separation is not by itself novel, the idea of predict-

ing the IR metrics of future documents to be ranked is a powerful

tool for IR. This successor based representation compounds with

the simplicity of linear relevance estimation by essentially forcing

the model to not only predict the most relevant document at each

time step but to accurately model the relevance of the rest of the

expected documents to be ranked in the future, as shown in Figure 4.

We provide an outline of this approach below.

The SF representation is based on the concept that the reward

function r (s,a), or document relevance, can be decomposed into

an inner product of a state representation ϕ : S → RK and reward



vector w ∈ RK such that

r (s,a) = ϕ(s,a)⊺w. (17)

This representation is not restrictive to any environment as it can be

trivially deconstructed to recover any reward function. We derive

the successor representation, ψ π ,by incorporating ϕ and w into

the standard Q-function to produceψ π .

Qπ (s,a) = E[Σ∞i=0γ
ir (si ,ai )|S0 = s,A0 = a, π ] (18)

= E[Σ∞i=0γ
iϕ(si ,ai )

⊺w|S0 = s,A0 = a, π ] (19)

= E[Σ∞i=0γ
iϕ(si ,ai )|S0 = s,A0 = a, π ]⊺w (20)

= ψ π (s,a)⊺w (21)

To conceptualize what ψ means: in the tabular case such as

Gridworld using one hot encodings, the ith component of ψ π is

the discounted sum of occurrences of reaching si of each possible

transition while following π . For IR, this will be the discounted sum
of document representations based on the ranking order determined

by our retrieval model. As SF maintains linearity across time, any

TD method can be used,

ψ π (s,a) = ϕ(s,a) + α[γψ
π (s ′,a) −ψ π (s,a)], (22)

and therefore can be trained in the same manner as Q-learning,

referred to as SFQL. With Proposition 4.2 and Corollary 4.2.1, we

see that this new approach can be applied within ISS framework

(ISS-SFQL) for deep retrieval models. In the non-tabular case where

a gradient is used to learn ϕ, w, andψ , the optimization occurs via

a two step process whereψ is optimized via the loss function:

L(θψ ) = E[| |ϕ(s) − γ max

a′
ψ (s ′,a′) −ψ (ϕ(s),a)| |2

2
] (23)

and w,ϕ via:

L(θw, θϕ ) = E[| |r (s,a) − ϕ(s)
⊺w| |2

2
]. (24)

To clarify, while linear regression is being used in a portion of

this state, it does not rely on any supervised labels and is used as

a method to update ψ ’s future trajectory estimates. Algorithm 1

provides an overview of the entire learning process and Figure 3

illustrates the overall framework. We adopt target networks and a

memory buffer as recommended in Hessel et al. [7] to improve the

stability of deep Q-learning agents during training.
1

By defining a SF approach for ranking, we enforce search to

be decomposed into a representation component and a reward

component. Furthermore, ψ π (s,a) captures the expected future

steps within its construction, forcing our model to predict a multi-

step function even in sparse environments.

6 EXPERIMENTAL SETUP
To evaluate the efficacy of TD based updates for IR, we examine

representative IR models of varying complexity as policies over

MSMARCO passage, Yahoo L4, and InsuranceQA. These datasets

were chosen due to the need to evaluate RL based methods on true

deep neural architectures and provide an approximate upper bound

of performance as true supervised labels are present.

1
https://github.com/dscohen/ISSTD

Algorithm 1: Approach for ISS-SF.

Input: Memory replay B, parameters θϕ , θw, θψ ,
exploration probability ϵ ≤ 1, MDP: (S,A, P,R,d0,γ )
for episode l = 1 to L do

initialize s ∼ d0
if Bernoulli(ϵ) then

sample action a uniformly

else
ϕ(s) = { fI R (zi )}

|s |
0

a = argmaxi ψ (zi , i)
⊺w

Store transition (z, i, r (s,a), s ′) in B
Randomly sample minibatch from B

Update θϕ , θw via Eq. 24

Update θψ via Eq. 23

s ← s ′

6.1 Data
MSMARCO: [19] This collection is based on Bing queries and

their corresponding results. Originally proposed for a question

answering task, the annotated data was used to create a passage

reranking task. The collection consists of 400M training tuples of

query, relevant, and non-relevant passages with the development

set containing ∼6,900 queries with each query corresponding to the

top 1,000 passages retrieved via BM25. A portion of the training set

was partitioned to act as validation during training to fairly report

results on the development set.

Yahoo L4: [27] Yahoo L4 consists of non-factoid questions which
take the form of “Manner” questions. The collection consists of

∼142,000 queries and corresponding answers. The train, dev, and

eval splits were 80%, 10%, and 10% respectively.

InsuranceQA: [3] This collection is a short text question-answer
dataset from the insurance domain where questions are created

from real user submissions, and the high quality answers come from

insurance professionals. The dataset consists of 12,887 QA pairs

for training, 1,000 pairs for validation, and two test sets containing

1,800 pairs on which we report the mean performance. For testing,

each of the 1,800 QA pairs is evaluated with 499 randomly sampled

candidate answers.

6.2 IR Policies – Network Architectures
To demonstrate the feasibility of a TD based RL approach for con-

ventional information retrieval, we use three different representa-

tive architectures as policies which cover recurrent, convolutional,

and transformer paradigms. We note the absence of a BERT based

model as the experiments are to demonstrate the feasibility of IS-

STD learning with varying architecture complexities. As BERT is

used as a pretrained base [40], it does not offer additional insight.

We specifically target deep neural architectures as they represent

real-world models that require non-trivial optimization as opposed

to feature-based learning to rank. In addition, said challenges will

help highlight the differences in performance between REINFORCE,

ISSQL, and ISSSF, and their approximate upper bound of supervised

learning [28].



MatchPyramid: This model consists of an initial interaction

matrix of the query and document’s embeddings that acts as an

input to a series of convolutional layers. While a deep network,

this model has shown to perform well on only a small number of

training queries, as demonstrated on Robust04 and other TREC

collections [23].

LSTM: As these architectures have been used extensively for

retrieval and are well studied [17, 22, 30], they provide a stable can-

didate to evaluate ISS-SFQL. The model consists of concatenating

the query and document and feeding it into a bidirectional LSTM

model. Max pooling over time is used prior to an upper feedforward

network.

Transformer Kernel: Lastly, we introduce a state of the art

model representative of the current neural retrieval architectures.

This approach uses transformer modules with a kernel pooling ap-

proach to learn the relevance score between a query and candidate

document and is the largest model of the architectures evaluated

in this paper [8].

As ϕ is a multidimensional representation of a document, the

standard architecture of the above models results in a scalar output.

Therefore, we use the layers prior to the final output as ϕ and fix

the output of each IR model to a fixed dimension. MatchPyramid

and LSTM-Match use a 200 dimension final layer, and Transformer

Kernel uses ϕ ∈ R22. While significantly smaller than the other

two approaches, this is due to the number of kernels used in the

original paper and offers a salient and compressed representation

of the query-document relation.

6.3 Baselines
As ISS-SFQL is an optimization method over a neural model, π ,
we evaluate performance against the current standard for RL in

IR, REINFORCE [34, 37]. We also include pairwise hinge loss to

demonstrate howwell these neural architectures can perform under

ideal training conditions, although this is not meant as a direct

comparison.

6.4 Optimization
All models and optimization methods use the Adam optimizer with

tuned learning rates via search over [10−5, 10−1]. We initialize all

embeddings with GloVE [24] with a dimension of 300. Other hy-

perparameters for the models were taken from their corresponding

works and demonstrated robustness across collections. Thememory

buffer for ISS-SFQL was constructed from {500, 2000, 10000, 20000},

and the target network and policy’s updates per steps were selected

from {1, 5, 10, 50}. The memory was not reset at each new episode.

γ was selected from {0.5, 0.7, 0.9, 0.99}. We discuss the sensitivity

of the algorithm to these hyperparameters below.

7 RESULTS AND DISCUSSION
In this section, we investigate whether the results from Proposi-

tion 4.2 and Corollary 4.2.1 hold for real-world examples and can

achieve competitive results with deep neural architectures. We

furthermore evaluate the efficacy of SF for IR by examining cross-

collection retrieval as a lifelong learning problem.

7.1 Performance Benchmarks
Examining the performance on Yahoo L4 and MSMARCO, we see

consistent performance across models and training regimes as

shown in Table 2. We remark on the competitive performance of

ISS-SFQL, suggesting that ISSTD approaches are viable for IR tasks

even in the case of deep neural models. While not the purpose of

this paper, the surprising result of the close performance difference

between the supervised pairwise hinge loss and ISS-SFQL suggests

that RL methods can act as an effective training alternative to super-

vised approaches even in RL’s most difficult environment – a sparse

reward setting. Given the nature of instability of RL methods, the

stability of supervised approaches, and the minimal hyperparame-

ter tuning, this provides promising insight into situations where

no supervised training signal is available, such as query reformu-

lation [18] or online recommendation systems where the input is

significantly large.

Of particular note is the poor performance of REINFORCE. We

attribute the close to random performance of these policies due to

the point collapse of the problem. While training, the distribution

π (s) would collapse to a single action despite our efforts due to

the gradient variance introduced via Markov chain Monte Carlo

sampling [28] and the nonlinear function approximation. We are

careful to comment that this is not indicative that policy gradient

methods are worse than TD approaches. However, by incorporating

additional structures into a TD framework (SF), we can significantly

increase the performance of RL based methods in cases where

REINFORCE fails. While not examined in this work, ISS-Actor-

Critic or ISS-DDPG could be alternative, more stable, options to

use policy gradient in IR.

7.2 Convergence
Table 3 reflects the benefit of incorporating novel RL methods. ISS-

SFQL is able to quarter the required number of episodes compared

to ISS-Q-learning to converge to a stable policy with respect to

performance on a validation set. In contrast, MDPRank’s algorithm

fails to converge at all when used for deep neural retrieval. Fur-

thermore, ISS-SFQL only requires twice as many samples as the

supervised approach while undergoing a bootstrap procedure.

7.3 Hyperparameter Sensitivity
Any RL algorithm has a substantial number of hyperparameters

that can drastically impact performance. We highlight the key as-

pects in Figure 5. Following the discussion of the transformer’s

architecture being sensitive to noise, we observe a similar sensi-

tivity to hyperparameters. The most poignant example of this is

the update frequency of ϕ,w, andψ . As the actual update to these

values occurs via minibatch from the memory buffer, updating too

frequently has the potential to introduce too much noise into these

minibatches. By slowing down the update frequency such that the

model changes once everym steps, we increase the likelihood of

sampling a more uniform batch to update.

This sensitivity is supported by the impact of replay size. We

observe a decrease in performance concerning TK as the memory

buffer size increases. As Liu and Zou [16] discuss the impact of

buffers with respect to agent performance, it is not uncommon to

see this sensitivity. We hypothesize that it is due to storing older



Method YahooL4 MSMARCO InsuranceQA
LSTM TK MP LSTM TK MP LSTM TK MP

REINFORCE 0.288 0.319 0.304 0.338 0.295 0.306 0.340 0.292 0.362

ISS-Q-Learning 0.409 0.421 0.416 0.331 0.325 0.374 0.419 0.435 0.426

ISS-SFQL 0.557† 0.535† 0.484† 0.531† 0.653† 0.488† 0.693† 0.731† 0.621†

Hinge loss 0.550 0.586 0.487 0.551 0.687 0.481 0.697 0.722 0.620

Table 2: Performance of training regimes over Yahoo L4, MSMARCO, and InsuranceQA data evaluated via MRR. † denotes
significance using Wilcoxon signed ranked test at p < 0.05.

Figure 5: Performance of ISS-SFQL across key hyperparameters on MSMARCO dataset.

Method LSTM TK MP

REINFORCE ∞ ∞ ∞

ISS-Q-Learning 210k 410k 205k

ISS-SFQL 35k 135k 35k

Hinge loss 20k 90k 15k

Table 3: Number of episodes (queries) needed to converge to
a stable retrieval model on Yahoo L4. Evaluation was done
every 5,000 episodes.∞ denotes that the method diverges.

transitions that no longer benefit the agent during the minibatch

update. While the more stable LSTM and MP models are robust to

this noise, the transformer-based architecture, TK, diverges.

Lastly, we examine the episode length, or initial size of Dur from

the MDP formulation. For reference, when set to 2, this mirrors the

bandit situation as the final document acts as the terminal state and

no future decisions need to be considered. Therefore, as the agent

is allowed to make more decisions and observe more documents,

it can better determine what is a relevant document and what is

not. This can be potentially attributed to the multi-step nature ofψ .
Not only does it need to estimate the reward directly via w, but the

construction requires the prediction of the subsequent documents.

Thus, when given a query and document ϕ(zi ),ψ has to estimate

what other similar documents are in the collection. The impact of

this auxiliary task is shown in the episode length graph. The sharp

decline of TKwhen the episode length equals 10 is due to the limited

capacity of its ϕ, which only has 22 dimensions by construction [8].

In this case, a slight modification of ISS-SFQL by expanding the

number of kernels used might be a better alternative than directly

truncating the final layer. A similar saturation occurs in the case of

MP and LSTM models, although without the performance drop-off

observed for TK.

8 CONCLUSION
We propose a novel, theoretically motivated framework to incor-

porate temporal difference based reinforcement learning for full

text retrieval under a state partitioned function. We empirically

demonstrate the flexibility of this approach by evaluating different

neural retrieval architectures in a ‘plug ’n play’ format that does

not require specific modifications or unique MDP formulations to

handle the size of the state space.
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