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ABSTRACT
Societal biases can influence Information Retrieval system results,
and conversely, search results can potentially reinforce existing so-
cietal biases. Recent research has therefore focused on develop-
ing methods for quantifying and mitigating bias in search results
and applied them to contemporary retrieval systems that leverage
transformer-based language models. In the present work, we expand
this direction of research by considering bias mitigation within a
framework for contextual document embedding reranking. In this
framework, the transformer-based query encoder is optimized for
relevance ranking through a list-wise objective, by jointly scoring
for the same query a large set of candidate document embeddings
in the context of one another, instead of in isolation. At the same
time, we impose a regularization loss which penalizes highly scoring
documents that deviate from neutrality with respect to a protected at-
tribute (e.g., gender). Our approach for bias mitigation is end-to-end
differentiable and efficient. Compared to the existing alternatives
for deep neural retrieval architectures, which are based on adversar-
ial training, we demonstrate that it can attain much stronger bias
mitigation/fairness. At the same time, for the same amount of bias
mitigation, it offers significantly better relevance performance (util-
ity). Crucially, our method allows for a more finely controllable
and predictable intensity of bias mitigation, which is essential for
practical deployment in production systems.1

CCS CONCEPTS
• Information systems → Retrieval models and ranking; • Com-
puting methodologies → Regularization; Natural language process-
ing; • Social and professional topics → Computing / technology
policy.

1Code repository: https://github.com/gzerveas/CODER
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1 INTRODUCTION
Information Retrieval (IR) systems reflect and may even exaggerate
societal biases and stereotypes in their results [6, 15, 18, 28, 33]. If
optimization of the underlying IR models is left to exclusively utility-
oriented objectives, search engines, through the continual feedback
loop of user interactions, can reinforce these biases in society (and
hence back in IR systems) [1, 11, 12, 29, 41]. This accentuates the
need for bias-aware IR models, in which fairness constraints are
imposed with an adjustable degree of effect to control the fairness-
utility trade-off in retrieval results [3, 4, 10, 25, 31, 38, 44]. To this
end, Rekabsaz et al. [31] recently introduced MSMARCOFAIR, a
reproducible evaluation framework to measure gender bias in the
text contents of search results, particularly suited to assessing the
interplay of bias mitigation and utility in deep IR models. The frame-
work identifies a set of bias-sensitive queries, singled out from the
queries of the MS MARCO dataset [2]. Given such a query, an effec-
tive and bias-aware IR model should highly rank relevant documents
with a balanced or neutral representation of genders in their text
contents. Beyond the notion of bias with respect to so-called pro-
tected attributes such as gender or ethnicity, we note that neutrality
of documents can also refer to opinion or political biases: if a query
can be answered by a relevant document with purely factual or un-
biased content, this document is preferable to a similarly relevant
but overtly biased document, which, notwithstanding reliability, may
contribute to polarization.

As an example, a query such as “what is the role of a governor?”
can and should be answered in a gender-neutral way. A document
reading “The governor is the chief executive of the state. His duties
include ... / he is responsible for ...” contains words charged/biased
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Figure 1: Schematic diagram of the contextual document embedding reranking (CODER) framework.

with respect to gender and induces an unnecessarily gender-biased
exposition. Thus, it would be desirable to rank higher a document
offering equally relevant information but using either gender-neutral
words or gender-representative words in a balanced way (e.g. “he or
she”). In this example, gender-representative words are pronouns, but
additional instances include “man”/“woman”, “father”/“mother”,

“actor”/“actress”, male/female names, etc. Similarly, a document
answering a purely factual query about the current state of the econ-
omy (e.g. “is inflation now higher than in 70’s”) could be penalized
if it contained words indicating political bias, such as “trumpism”,

“wokeness”, “MAGA”, “neoliberal”, “leftist”, etc.
We note that this notion of fairness through neutrality is not appli-

cable to all queries; rather, we measure it on a set of expert-curated
queries for which bias is considered “socially problematic” [20, 21].
Furthermore, it is not applicable to all retrieval use cases; for ex-
ample, when ranking job applicants, who are inevitably gendered,
a more suitable framework would optimize for fairness of expo-
sure [10] (e.g. making sure that, given the same level of fitness,
female applicants are ranked higher than male applicants as often as
male applicants are ranked higher than female applicants).

A variety of past works have proposed effective methods to ad-
dress bias mitigation, often using some sort of list-wise optimization
such as Gumbel-Softmax, stochastic optimization, or reinforcement
learning [10, 25, 27, 37, 39]. However, to the best of our knowledge,
almost all prior works operate solely on extremely shallow ranking
models. As Cohen [7] shows, naively applying shallow methods to
deep transformer based architectures often presents significant chal-
lenges. Given the scope of this contribution, we therefore consider
the relevant work of Rekabsaz et al. [31], where the authors propose
integrating adversarial training in deep ranking models in order to
improve bias mitigation. Their adversarial method aims to remove
gender-related information from the model’s internal embeddings,
making the predictions (potentially) agnostic to the explicit/implicit
presence of gender concepts in a given query-document pair.

The inherent point-wise nature of this adversarial method fits
well to the current dominating paradigm of point-/pair-wise opti-
mization [19, 22, 32, 47], embraced mainly due to the practical and
conceptual complexities of training deep IR models [7]. Despite
the benefits of this approach in mitigating gender bias, previous
work [8, 13, 23, 31] and our own experiments show that adversarial
training can be highly unstable, with unabated fluctuations over fair-
ness and utility metrics. This issue significantly impedes identifying
a model checkpoint that reliably yields generalizable performance
and operates within a desired range in the fairness-utility trade-off –

a necessary aspect for the wide adoption of bias-aware IR models in
practice.

We approach this topic by introducing a novel list-wise bias mit-
igation method that leverages the recently introduced COntextual
Document Embedding Reranking (CODER) [45], a neural retrieval
framework which enables set-based training of any pretrained dual-
encoder deep IR model. The latter is a class of models that represents
the state of the art in dense retrieval (e.g. [16, 30, 35]). The guid-
ing principle of bias mitigation is that neutral/unbiased documents
should be ranked higher than biased documents of the same or simi-
lar relevance. To this end, we extend CODER with a novel list-wise
regularization term defined to support neutral documents in final
relevance predictions.

We apply our bias-aware optimization method using CODER with
TAS-B [16] as the base transformer encoder model. We compare our
method with adversarial training for bias mitigation of TAS-B and a
cross-encoder (query-document term interaction) BERT Reranker [26],
the current SOTA for bias mitigation proposed by Rekabsaz et al.
[31]. Ranking results as well as training dynamics are evaluated in
terms of utility (MRR, and Recall) and neutrality/fairness (NFaiRR)
metrics on the MSMARCOFAIR collection. Our results show that
besides achieving state-of-the-art performance in terms of fairness
for the same utility, our set-based neutrality regularization method,
in contrast to adversarial alternatives, provides a stable optimization
of the network in a short training time, and allows predictably ad-
justing the intensity of the trade-off between fairness and utility, in a
far wider range.

Our contribution thus represents a significant step towards advanc-
ing bias mitigation in search, from a theoretical discussion point or a
largely experimental research topic, to a practical approach that can
be readily integrated in state-of-the-art retrieval systems deployed in
industry.

2 METHOD
Our approach optimizes the parameters of a retrieval model such
that it assigns scores to documents in proportion to their relevance
to a query, while at the same time directly imposing a neutrality
constraint on the top-ranked documents. To achieve this, we need
a training setup where a large number of documents is simultane-
ously scored for the same query, and therefore the standard training
setup using (query, positive document, negative document) triplets
is unsuitable. Making use of in-batch documents (e.g., [17, 24, 30])
can indeed provide a large number of random documents as nega-
tives; however, random negatives are only very rarely related to the
query or each other, and have been convincingly shown to be less
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effective than retrieved negatives [30, 42, 45, 46]. Importantly, we
wish to impose neutrality on the top-ranked documents retrieved
by a system, whereas randomly sampled documents are extremely
unlikely to end up in high-ranking positions and are thus poor targets
for regularization. For these reasons, we instead utilize the recently
introduced contextual document embedding reranking (CODER)
framework [45], which, given a query, jointly scores a large set of
candidate documents that together constitute a ranking context.

A schematic diagram of the framework is shown in Figure 1.
A pre-trained transformer encoder 𝜁 first transforms a tokenized
query 𝑞 of length 𝑤 into a sequence of 𝑑-dimensional embedding
vectors: Z = [z1; . . . ; z𝑤] = 𝜁

(
𝑞;𝜃𝑄

)
∈ R𝑤×𝑑 , out of which an

aggregator function 𝑔(Z) extracts a single vector. In this work, as 𝜁
we choose the query encoder from TAS-B [16], which is based on
DistilBERT [36] and was the most effective base model evaluated
by Zerveas et al. [45]. The aggregation function here simply selects
the output embedding corresponding to the first query token, i.e.,
[CLS]: 𝑔(Z) = z1 ∈ R𝑑 .

A scoring function 𝜑 computes a scalar relevance score 𝑠𝑖 for each
document embedding x𝑖 ∈ R𝑑 , 𝑖 = 1, . . . , 𝑁 , based on their similarity
to the query embedding 𝑔(Z). The set of 𝑁 documents consists
of the ground-truth relevant document(s) and the top candidates
retrieved for the same query by an arbitrary retrieval method (here,
BM25 [9] by Anserini [43]) in advance. Their embeddings have
been precomputed by the document encoder of a dual-encoder model
(here TAS-B). A large number of negative documents is essential for
providing adequate signal to effectively capture relevance [30, 45],
and we use 𝑁 = 1000, following Zerveas et al. [45]. Although the
scoring function can in general be parametric, here we simply use
the dot-product, which is commonly used for evaluating similarity
and was shown by Zerveas et al. [45] to be effective:

ŝ = 𝜑 (𝑔(Z),X) = X · 𝑔(Z) ∈ R𝑁 (1)

Throughout training, the parameters of the query encoder are
fine-tuned through the ListNet loss [5], which for a given query
is equivalent to the KL-divergence between a distribution over the
target (ground-truth) relevance labels y ∈ R𝑁 , defined for the set
of 𝑁 candidate documents (where the relevance of all documents
not explicitly defined is assumed to be 0), and a distribution over the
corresponding predicted scores ŝ:

L𝑢 (y, ŝ) = DKL (𝜎 (y) | | 𝜎 (ŝ)) = −
𝑁∑︁
𝑖=1

𝜎 (y)𝑖 log
𝜎 (ŝ)𝑖
𝜎 (y)𝑖

(2)

where 𝜎 denotes the softmax function.
The loss function above guides parameter optimization towards

maximizing the relevance of top-ranked documents, i.e., the utility
for the user. To impose neutrality on the top-ranked documents, we
add the following neutrality loss term to obtain the total loss:

L𝑛 (y𝑛, ŝ) = DKL (𝜎 (ŝ) | | 𝜎 (yn)) = −
𝐶∑︁
𝑖=1

𝜎 (ŝ)𝑖 log
𝜎 (yn)𝑖
𝜎 (ŝ)𝑖

(3)

Ltot = L𝑢 + 𝜆𝑟L𝑛 (4)

where 𝜆𝑟 is the regularization coefficient, 𝐶 is the cut-off rank for
considering neutrality (we use 𝐶 = 10), and yn are the neutrality
scores for each document. These are computed following Rekabsaz

et al. [31], and are based on the frequency of occurrence of terms
indicative of bias with respect to the protected attribute.

We note that the order of distributions in the asymmetric KL-
divergence is reversed in the two loss terms: in the utility loss, we
primarily penalize assigning a low score to ground-truth relevant
documents (rather than the case of assigning a high score to docu-
ments which have not been annotated as relevant). This is desirable,
among other reasons, because relevance annotations are sparse and
many candidate documents can be relevant without having been
marked as such [30]. By contrast, the neutrality loss primarily penal-
izes assigning high scores to documents with low neutrality scores,
rather than the case of assigning a low score to neutral documents
(since neutrality alone is not indicative of relevance).

3 EXPERIMENT SETUP
Resources. Our experimental setting closely follows Rekabsaz

et al. [31]. Fairness and utility of the models are evaluated on 215 cu-
rated bias-sensitive queries, i. e., “gender-neutral queries for which
biases in their retrieval results are considered as socially problem-
atic” [20, 21], provided by MSMARCOFAIR . The models are trained
on the data provided by the MS MARCO Passage Retrieval col-
lection [2], and retrieval is conducted on the collection’s passages.
The protected attribute is gender, defined in binary fashion using the
gender-representative words (158 words for each gender) provided
in previous work [31, 34]. These words are used to calculate the neu-
trality score for each document with the term occurrence threshold
set to 1 (c. f. Rekabsaz et al. [31]).

Retrieval Models. All models are trained and evaluated by rerank-
ing candidates first retrieved by BM25 [9]. CODER(TAS-B) is our
proposed bias mitigation approach explained in Section 2. We select
TAS-B [16] as a base transformer encoder for CODER, due to its
superior retrieval performance in reranking and dense retrieval sce-
narios. AdvBERT is the model introduced by Rekabsaz et al. [31]
which applies adversarial training to a BERT Reranker [26]. The
adversarial network in AdvBERT is defined on the output vector of
the [CLS] token when both query and documents are passed to the
BERT model. Following Rekabsaz et al. [31], the prediction label of
the adversarial network is defined as a binary variable, which is set to
1 (gendered) if either the given query or document are not fully gen-
der neutral texts, and 0 otherwise. AdvBERT approaches removing
gender-related information in models using a gradient reversal mech-
anism [14]. The gradient of the loss corresponding to the adversarial
“gender detector” is scaled by the adversarial factor 𝜆𝑎 , which allows
tuning the intensity of bias mitigation. AdvBERT is the best perform-
ing model reported in Rekabsaz et al. [31], achieved by fine-tuning
the BERT-Mini [40] model. AdvTAS-B applies a similar adversarial
training procedure as AdvBERT to the TAS-B model, providing
an adversarial baseline directly comparable with CODER(TAS-B).
Because AdvBERT is a cross-encoder model, while TAS-B is a dual
encoder, in AdvTAS-B the adversarial network is defined over the
concatenation of the query and document embeddings (the [CLS]
output of the corresponding encoder), and training aims to remove
gender-related information in both query and document encoders.2

2We additionally conducted experiments on other variations, such as exclusively training
the query or document encoder. We observed that the chosen AdvTAS-B model shows
the best and most stable performance in terms of both fairness and utility.
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Figure 2: Utility (MRR@10) versus fairness (NFaiRR@10). The intensity of color corresponds to an increasing adversarial or
regularization factor. Compared to adversarial baselines, regularization with CODER allows modulating fairness to much higher
values, while for the same values of fairness, utility is higher.

Evaluation of Bias Mitigation and Utility. The fairness of the
ranking models is evaluated in terms of the Normalized Fairness of
Retrieval Results (NFaiRR) metric [31]. The NFaiRR metric mea-
sures to what extent the contents of the retrieved documents show a
balanced representation of a protected attribute (gender in our experi-
ments). This is done by first calculating FaiRR scores as the sum over
the neutrality scores of the top retrieved documents, weighted by
their ranking positions. The NFaiRR metric provides comparable re-
sults across queries by normalizing the per-query FaiRR scores over
the ideal FaiRR inferred from a background set of documents (e.g.
the top documents retrieved by a baseline BM25 model [31]). We cal-
culate the NFaiRR metric with a cutoff at 10 for each bias-sensitive
query, and report the average results over queries. The utility of the
models is evaluated with common metrics for MS MARCO (which
defines relevance in a binary fashion and is a sparsely annotated col-
lection, most often with a single relevant passage per query), namely
mean reciprocal rank (MRR) and Recall, both at cutoff 10.

Training, Model Selection and Hyperparameters. When tuning
the intensity of bias mitigation, we need to train a model for each
value of the regularization coefficient or adversarial factor. Which
time-dependent model instance (checkpoint) should we choose as
“best”, in order to evaluate the method’s performance? Since there
is a trade-off between utility and fairness, we follow the principled
approach proposed by Rekabsaz et al. [31]: we max-min normalize
MRR and NFaiRR to a range between 0 and 1, and choose the
instance where their harmonic mean (F1 score) is maximum over the
entire training session. In the case of adversarial methods, because
validation performance fluctuates persistently during training, it
is not clear when to stop training. By contrast, CODER shows a
smooth convergence behavior (see Fig.4) and in practice would
benefit from stopping criteria based on the relative improvement of
metrics. However, to avoid giving this advantage to CODER, while
still reflecting practical concerns for model training and selection,
we fix the maximum training time of all models to a value that
we estimated to be sufficient for each model to achieve its “best”
performance (as defined above), after running a few tentative training

sessions. Consequently, regardless of the regularization/adversarial
factor, this value was set to 10 hours for CODER, 12 hours for
AdvTAS-B, and 8 days for AdvBERT3. We nevertheless note that,
unlike in the case of the adversarial models, in the case of CODER
the “best” performance was most often reported at or close to the
very end of training, which indicates that its maximum performance
is likely underestimated and that it would benefit from a training time
dependent on the regularization coefficient. To train CODER, we
use the same hyperparameters as in Zerveas et al. [45], but increase
batch size from 32 to 64 to accelerate convergence.

4 RESULTS
Figure 2 depicts how retrieval performance changes in terms of
utility and fairness/neutrality (measured as described in Section 3
in terms of MRR@10 and NFaiRR@10 respectively) as we pro-
gressively increase the intensity of bias mitigation (shown by the
intensity of marker color), starting from 0. Compared to the adver-
sarial baselines, it is evident that regularization with CODER allows
modulating fairness to much higher values. Importantly, our method
yields an approximately linear trade-off between utility and fairness
and allows finely controlling it through the regularization coefficient
𝜆𝑟 . This is more directly shown in Figure 3. By contrast, in the case
of adversarial training, although fairness can be increased to some
extent, the dependence of utility and fairness on the adv. gradient fac-
tor 𝜆𝑎 is complicated and unpredictable. It is thus difficult to select
a desired point in the trade-off, and the corresponding evaluations
appear as a disorderly point cloud on Figure 2.

Furthermore, for the same values of fairness, Figure 2 shows that
CODER can achieve substantially higher utility (evaluation points lie
higher and to the right of all baseline points). Given that AdvBERT is
the hitherto state-of-the-art method for this task and dataset, our neu-
trality regularization method based on CODER therefore achieves
the new state-of-the-art performance.

3AdvBERT requires a much longer time because it is a model based on much slower self-
attention over the concatenated query and document, and because it is fine-tuned from
the standard NLP version of BERT-Mini, as opposed to TAS-B, an encoder pretrained
for retrieval on MS MARCO.
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Figure 3: Modulation of utility and fairness by controlling the regularization factor (CODER) or the factor of adversarial gradient
(AdvBERT, AdvTAS-B). Regularization with CODER allows to select the utility vs. fairness trade-off in a finely controllable and
predictable manner.

In the limited range of NFAiRR@10 ∈ [0.90, 0.93] we find the top
4 points in terms of F1 scores (harmonic mean between MRR@10
and NFaiRR@10) for each method and display statistics of per-
formance metrics in Table 1. NFaiRR itself is provided only as a
reference in this table, since it acts as the control parameter and the
range is merely chosen to have overlapping values.

Besides unpredictability with respect to the bias mitigation control
factor, the performance of models undergoing adversarial training
fluctuates haphazardly during training and it is thus very difficult to
know when the model has a potential to further improve its perfor-
mance or when to stop training. In practice, one resorts to using a
fixed training time. By contrast, in Figure 4 we observe that regular-
ization with CODER shows smooth convergence patterns and allows
setting a stopping criterion based on monitoring performance, which
in turn allows an adaptable training time for each regularization
coefficient and can yield better performance (although for the sake
of comparison we didn’t use this technique in this work).

Finally, we note that Rekabsaz et al. [31] also introduced TRECDLFAIR,
a subset of the TREC Deep Learning Track 2019 queries, but dis-
covered that this set is not very challenging, and all methods they
examined performed well. Indeed, we find that CODER(TAS-B)
with 𝜆𝑟 = 1 can attain an MRR@10 score of 1.0 at a NFaiRR@10
score of 0.967, and when boosting NFaiRR@10 to 0.985 with 𝜆𝑟 = 8,
MRR@10 only drops to 0.944, which is a stronger performance than
all reported methods in Rekabsaz et al. [31].

5 CONCLUSION
We introduce a novel method for reducing bias in search results,
which is based on directly imposing a neutrality regularization loss
to the documents most highly scored for relevance. To achieve this,
we leverage a contextual document embedding reranking framework,
which, for the same query, jointly scores a large set of retrieved
candidate documents that together constitute a retrieval context. We
demonstrate that our method can lead to much stronger bias mitiga-
tion/fairness compared to the existing alternatives for deep neural
retrieval architectures, which are based on adversarial training. At the
same time, it achieves the state-of-the-art performance with respect
to utility (relevance) for the same amount of bias mitigation. Finally,
our method allows for a more finely controllable and predictable
intensity of bias mitigation, which is of paramount importance with
respect to widespread adoption.

F1 NFaiRR@10 MRR@10 Recall@10

Mean
CODER(TAS-B) 0.356 0.915 0.222 0.429
AdvTAS-B 0.351 0.911 0.217 0.381
AdvBERT 0.318 0.919 0.193 0.402

Median
CODER(TAS-B) 0.358 0.914 0.223 0.428
AdvTAS-B 0.346 0.911 0.214 0.386
AdvBERT 0.316 0.920 0.191 0.401

Max
CODER(TAS-B) 0.379 0.927 0.240 0.450
AdvTAS-B 0.348 0.915 0.231 0.394
AdvBERT 0.331 0.926 0.202 0.435

Table 1: Comparison of ranking performance based on top 4 F1
scores within the NFaiRR range [0.9 - 0.93].
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Figure 4: Utility (left) and fairness (right) on MSMARCO dev as
they evolve during training, for a particular setting of regulariza-
tion or adversarial factor, chosen such that the models perform
comparably. Training times are significantly shorter for CODER
and thus the horizontal axis is normalized in the same range.
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